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ABSTRACT 

 

 
 

A cloud database is a database that typically runs on a cloud computing platform. Of 

the databases available on the cloud, traditional data model is SQL-based. The recent 

trend is to move on to NOSQL data model. Now, the question is which database 

approach is better to choose in this era of ‘Big Data’? SQL databases are difficult to 

scale, meaning they are not natively suited to a cloud environment, although cloud 

database services based on SQL are attempting to address this challenge. On the 

other hand, NOSQL databases are built to service heavy read/write loads and are 

able scale up and down easily, and therefore they are more natively suited to running 

on the cloud. Our aim for thesis is to investigate suitable data storage for cloud. 

Considering the ‘Big Data’ scenario of today’s world, we set forth to choose the 

NOSQL database model as the preferred solution for cloud computing. This paper 

aims to show two investigations on different branches of cloud data storage. The first 

analysis is based on the case study of performance benchmarking on 3 popular 

NOSQL databases - MongoDB, Cassandra, and HBase. The next part of investigation 

includes an experiment on the most popular ‘Big Data’ management framework – 

namely, Hadoop. Hadoop uses MapReduce for parallel computation, but writing 

MapReduce function is hard for programmers. So, our experiment is to configure 

HIVE data warehousing system on the top of Hadoop as a wrapper, so that end users 

gets benefit of using a SQL-like language, which is known as ‘HiveQL’ and provided 

by HIVE even if with the environment of complex MapReduce function. 
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Chapter 1 

 

Introduction 
 

 

 

The revolutionary prospect of cloud computing is changing the way of people’s 

thought in IT. Day by day, the amount of data stored at companies like Google, 

Yahoo, Facebook, Amazon or Twitter has become incredibly huge. The new 

challenging requirement of this ‘Big Data’ era make us realize to rethink what we 

require of a database, and to come up with answers aside from the relational 

databases that have served us well for a quarter of century. Thus, web applications 

and databases in cloud are undergoing major architectural changes to take advantage 

of the scalability provided by the cloud. 

 

1.1 Background 

Only in the last century, data size would have been measured as ‘Gigabytes to 

Terabytes’. This ‘traditional data’ had been well-managed by popular SQL database 

(RDBMS – Relational Database Management System). But the scenario has changed 

dramatically with the advent of ‘Cloud Computing’. The advent of ‘Cloud Computing’ 

technology has caused a fundamental change to the nature of data. Now, in the 20th 

century, data size is measured as ‘Petabytes to Exabytes’ and even with ‘Zettabytes’. 

One Zettabyte is counted as 1021 bytes [1]. So, it is a huge amount of data.  
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We present a statistic of recent data explosion to have an idea of ‘Big Data’ scenario 

in today’s world. [2] [3]  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Also, to remember, data size is not the only issue to focus on. Instead of structured 

data, the variety of data types is increasing, namely unstructured text

and semi-structured data like social media data, location

data. So, big web enterprises also need a ‘Distributed d

‘Centralized database’. 
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1.2 Motivation 

 

The background situation forces big web enterprises to think for a new database 

solution as traditional SQL database is not natively suited for cloud environment. A 

popular trend that is named as ‘NOSQL’ is emerging to solve the limits of SQL 

database. NOSQL breaks the one-eyed rule of relational database.  

 

Also, we find new frameworks and analytic approaches are evolving rapidly. The 

most popular framework now-a-days is ‘Hadoop’. Another special framework is ‘Hive’, 

which works as a wrapper on top of ‘Hadoop’. 

 

The evolving technologies motivates us to make research on back-end section of cloud 

computing.  

 

In this paper, we aim to explore different branches of NOSQL database and make an 

experiment on ‘Hadoop’ and ‘Hive’ framework. 
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1.3 Thesis Outline 

 

Chapter 2  

This chapter analyzes different characteristics of two main types of cloud    databases 

and conducts a comparison study to choose the better database tool. 

 

Chapter 3 

This chapter analyzes different categories of chosen database approach ‘NOSQL’ and 

presents a case study on  performance benchmarking of 3 popular NOSQL databases, 

namely, MongoDB, Cassandra and HBase. 

 

Chapter 4 

This chapter investigates on the best knowing Data Management Framework, 

namely, Hadoop and its Programming Model – MapReduce. 

 

Chapter 5 

This chapter investigates on a Data Warehouse System – Hive, which is known to be 

used in Facebook which also solves the complex query procedure of Hadoop by using 

a SQL-like language that is named as HiveQL. 

 

Chapter 6 

This chapter summarizes our thesis work and gives an idea about our future plan. 

 

Appendix 

Appendix points out the implementation and configuration work on Hadoop and 

Hive. 
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Chapter 2 

 

Cloud Data Storage Models 

 
 

In this chapter, we will identify the available cloud data storage models and analyze 

their characteristics to pick the appropriate database approach for ‘Big Data’ 

evolution. 

 

2.1 Available Cloud Data Storage Models 

 

We set forth the approaches for cloud database to be counted as two main types –  

1.  SQL database model or RDBMS (Relational Database Management System)   

2. NOSQL database model. 

The traditional database model is SQL-based. It is known as RDBMS which has been 

around for more than 40 years and invented in 1970 by IBMer Edgar Codd. The main 

property of SQL database is that it uses relational algebra. 

The second option for database choice is NOSQL. The acronym ‘NoSQL’ was first 

coined in 1998 by Carlo Strozzi [4]. NOSQL does not mean “No SQL”; it rather means 

“Not Only SQL”. And the SQL word represents the relational databases, not the SQL 

language [5]. The idea for emerging this database is that both technologies can 

coexist and each has its place. 

In the next section, we present characteristics of both databases. 
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2.2 Properties of SQL Database 

SQL database has 3 major characteristics –  

1. Fixed Schema 

2. Relational Algebra 

3. Query Language – SQL 

In the following discussion, we briefly explain each of these properties. 

 

2.2.1 Fixed Schema 

 

SQL database follows a fixed schema condition. The term ‘Fixed Schema’ means - 

every requirements of database model have to be predefined [6]. 

 

2.2.2 Relational Algebra 

As we have stated before, this the most import property of SQL database. The 

Relational Database Model states that - All information must be held in the form of a 

table. A table describes a specific entity type, and all attributes of a specific record are 

listed under an entity type. Each individual record is represented as a row, and an 

attribute as a column. Relations are represented as tables in the database through 

JOIN operation. 

 

2.2.3 Query Language – SQL 

The SQL database uses SQL as query language. SQL states for – Structured Query 

Language. 

 

Example of SQL databases are: MySQL, Oracle, Microsoft SQL Server, PostgreSQL, 

IBM etc. 
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2.3 Properties of NOSQL Database 

NOSQL database is quite different from SQL database in some significant ways. We 

find 4 major characteristics of NOSQL database – 

1. Flexible Schema 

2. Non-Relational Database 

3. Simple Key-Value  Stores 

In the following discussion, we briefly explain each of these properties. 

 

2.3.1 Flexible Schema 

Flexible schema means - the schema can be changed according to the need for design 

and is defined by the program or data itself. So, conditions need not to predefine. 

NoSQL database systems are developed to manage large volumes of data. It follows 

the ‘Flexible Schema’ property. 

 

2.3.2 Non-Relational Database 

 

NOSQL is known as ‘Non-Relational’ database. Here, the term -‘Non-Relational’ 

does not mean “has no relations” or “cannot be described in terms of relational 

algebra.” It means - “is not based on Edger Codd’s relational database model”. [7]  

 

What a non-relational database does not do is - organize its data in related tables 

[8]. It does not have any ‘JOIN’ operations or constraints (i.e. NOT NULL) and does 

not require having ‘Normalizing’ format. 

 

We present an example of ‘Non-Relational Database’ to the contrary of ‘Relational 

Database’ – 

In a SQL database, a blog might have one table that stores posts and another table  



www.manaraa.com

8 
 

 

 

that stores comments. A JOIN is then required to pull out all the comments along  

with a particular post. Each time, the relational database needs to define the 

relation through JOIN and other constraints. 

 

On the other hand, NOSQL database does not require defining relations through 

constraints. With a non-relational database, one “collection” (the non-relational 

version of a table) would store all of the posts. Each comment associated with a post 

would be stored as part of that post’s record within the collection. This means that 

one record (or “document”, in non-relational terms) might contain just the post and 

no comments, another record might contain a much longer post and hundreds of 

comments. The benefit is that when we go to retrieve an individual post, we are 

automatically retrieving all the associated information (e.g., the comments for that 

post).  

 

2.3.3 Simple Key-Value Stores 

 

NOSQL database is simple Key-Value Stores. It makes the data retrieving more 

efficient. The Key-Value Store idea is more like ‘Array Indexing’. For example, in a 

web service, a name is just a key and the whole data can be retrieved according to the 

name. 

 

Example of NOSQL databases are: MongoDB, Cassandra, HBase etc. 

 

So, here we summarized the properties of SQL and NOSQL database.  

 

Now, in our next section, we conduct a comparison study on both database models to 

find the better suited database approach for cloud computing. 
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2.4 A Comparison Study – SQL vs. NOSQL 

This section analyzes the issues on ‘SQL vs. NOSQL Debate’. We consider 4 issues – 

1. Schema 

2. ACID vs. BASE Property 

3. CAP Theorem 

4. Scalability 

In the following sub-sections, we made comparison on each issue. 

 

2.4.1 1st Issue – Schema 

SQL database follows ‘Fixed Schema’. On the other hand, NOSQL database follows 

‘Flexible Schema’. 

 

We find NOSQL database as the preferred solution for cloud computing. Our reasons 

for supporting NOSQL database are given below – 

 

1. Huge Data Size 

This is the era of ‘Big Data’ where size of data is changing rapidly. We can we 

can think of Twitter as example. When it started out, it just collected bare-

bones information with each tweet: the tweet itself, the Twitter handle, a 

timestamp, and a few other bits. Over its five-year history, though, lots of 

metadata has been added. A tweet may be 140 characters at most, but a 

couple KB is actually sent to the server, and all of this is saved in the 

database [9]. So, preparing a huge and fixed schema is quite impractical in 

such case.  

 

2. Continuously Changing Data Type 

Not only the data size, but also the changing nature of data was our 
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 consideration. Modern applications frequently deal with unstructured data: 

blog posts, web pages, voice transcripts, and other data objects that are 

essentially text. It is impossible to predict how data will be used, or what 

additional data these applications will need - as the project unfolds. For 

example, many applications are now annotating their data with geographic 

information: latitudes and longitudes, addresses. That almost certainly 

wasn’t part of the initial data design. So, all these requirements cannot be 

predefined and thus, flexible schema is suitable in this case. 

 

NOSQL has flexible schema as schema can be changed according to the need for 

design and is defined by the program or data itself. So, NOSQL is the better choice as 

database model in this case. 

 

2.4.2 2nd Issue – ACID vs. BASE Property 

SQL database has ACID Property. On the other hand, NOSQL database has the 

BASE property. 

 

 First, we describe each property here. 

ACID Property 

ACID stands for Atomicity, Consistency, Isolation and Durability. This 

property says that database transactions should be – 

� Atomic: Everything in a transaction succeeds or the entire transaction is 

rolled back. [10] 

� Consistent: A transaction cannot leave the database in an inconsistent 

state. 

� Isolated: Transactions cannot interfere with each other. 

� Durable: Completed transactions persist, even when servers restart etc. 
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BASE Property 

BASE stands for Basically Available, Soft State and Eventual Consistency.  

• Basic Availability:  

This constraint states that the system does guarantee the availability of the 

data; there will be a response to any request. But, that response could still 

be ‘failure’ to obtain the requested data or the data may be in an 

inconsistent or changing state, much like waiting for a check to clear in 

anyone’s bank account. [11] 

• Soft-state:                

The state of the system could change over time, so even during times    

without input there may be changes going on due to ‘eventual consistency,’ 

thus the state of the system is always ‘soft.’ 

• Eventual consistency: 

The system will eventually become consistent once it stops receiving input. 

The data will propagate to everywhere it should sooner or later, but the 

system will continue to receive input and is not checking the consistency of 

every transaction before it moves onto the next one. 

The above description summarizes that - ACID compromises with ‘Availability’ for 

the sake of ‘Consistency’. To the contrary, BASE compromises with ‘Consistency’ for 

the sake of ‘Availability’. 

Now, it depends on the type of application that which property we should give 

priority. Here, we are considering cloud computing environment where modern 

applications mostly need ‘Availability’ even if have to compromise with 

‘Consistency’. We state an example for better understanding of the scenario –  

Let’s consider, we run an online book store and proudly display how many of 

each book we have in your inventory. Every time someone is in the process of  
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buying a book, we lock part of the database until they finish so that all 

visitors around the world will see accurate inventory numbers. That works 

well if we run a small shop but not to run Amazon.com. 

Amazon might instead use cached data. Users would not see not the 

inventory count at this second, but what it was say an hour ago when the last 

snapshot was taken. Also, Amazon might violate the “I” in ACID by 

tolerating a small probability that simultaneous transactions could interfere 

with each other. For example, two customers might both believe that they 

just purchased the last copy of a certain book. The company might risk 

having to apologize to one of the two customers (and maybe compensate them 

with a gift card) rather than slowing down their site and irritating myriad 

other customers. 

So, considering the cloud computing scenario, NOSQL is better over SQL again. 

A question can arise here that “Why can’t we have both ‘Consistency’ and 

‘Availability’ at the same time?” We explain the answer in the next section through 

CAP theorem. 
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2.4.3 3rd Issue – CAP Theorem 

CAP theorem was first coined by Eric Brewer in the year 2000 [12]. CAP stands for – 

• Consistency:  

All nodes see the same data at the same time.  

• Availability: 

Guarantee that every request receives a response about whether it was 

successful or failed. 

• Partition Tolerance: 

The system continues to operate despite arbitrary message loss or failure of 

part of the system. So, operations will complete, even if individual 

components are unavailable. 

 

The theorem states that - 

“A distributed system cannot ensure all three of the following properties at once. 

Web services can pick at most 2 out of these 3 requirements at a time.” 

 

So, there are 3 options to choose for web services – 

1. CA – Consistency & Availability 

2. CP – Consistency & Partition Tolerance 

3. AP –Availability & Partition Tolerance 

 

Here, we analyze each scenario by giving example [13] – 

1. Scenario – 1: CA (Sacrificing Partition Tolerance) 

On each of the three nodes, we will only store a subset of the user profiles. 

This is called sharding. Node one will have users A-H, node two I-S, and node 

three T-Z. As long as each node is up and running, we have achieved a three  
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times higher throughput than with a single node as each node only server a 

third of the traffic (assuming of course that user profile querying and 

updating is uniformly distributed through the alphabet). Consistency is 

achieved because immediately after data is written, it is accessible. 

Availability is achieved because each server is accessible in real time. 

However, we have lost the concept of partition tolerance as the disabling of 

one server has rendered a certain section of users unreachable. This carries 

the notion that upon hardware failure, data could have permanently been 

lost. All in all, not a good sacrifice under cloud environment. 

 

2. Scenario – 2: CP (Sacrificing Availability) 

On each of the three nodes, we will store all the user profiles. And 

furthermore, to guarantee data consistency and data loss prevention, we will 

ensure that every write into the system happens on all three nodes before it 

is completed. So, if were to update a profile for Bob McBob, any subsequent 

queries or writes on Bob McBob’s profile would be blocked until the update 

has completed. Even worse is when one of the nodes is lost but the 

requirement of three writes is still required, our entire system is unavailable 

until it is restored. This means that while our data is consistent and 

protected, we have sacrificed the availability of the data. This can be a 

reasonable sacrifice for cloud environment. 

 

3. Scenario – 3: AP (Sacrificing Consistency) 

On each of the three nodes, we will store all the user profiles. However (and 

different than scenario B), we will acknowledge a completed write 

immediately and not wait for the other two nodes. This means that if a read 

comes in on node two for data written on node one, it may or may not be up-

to-date depending on the latency of replication. We are still highly available  
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and still partition tolerant (with respect to the latency it takes to replicate to 

another second node). This is also a satisfying scenario under cloud 

environment. 

Now, our aim was to select either SQL database or NOSQL database. We find that 

SQL database picks ‘CA’ property following CAP theorem. So, it sacrifices the most 

important property for a ‘Distributed Database’ that is – ‘Partition Tolerance’. On 

the other hand, NOSQL database sacrifices either ‘Consistency’ or ‘Availability’ and 

picks between ‘CP’ and ‘AP’. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1 CAP Theorem 
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Cloud computing technology is built upon the idea of ‘Distributed Database’. So, if 

‘Partition tolerance’ is not ensured then cloud technology will not survive. So, ‘CA’ is 

not a preferred choice for web services and they are forced to choose between ‘CP’ 

and ‘AP’. 

That makes the conclusion that according to CAP theorem; again, NOSQL database 

wins over SQL database. 

 

2.4.4 4th Issue – Scalability  

 

Scalability means the capability to cope and perform under an increased or 

expanding workload.  

 

A system that scales well will be able to maintain or even increase its level of 

performance or efficiency when tested by larger operational demands [14].  That is 

one of the fundamental requirement of cloud computing. So, ‘Scalability’ is considered 

as a major issue while choosing cloud database. 

 

We can have 2 types of scalability – 

1. Horizontal Scalability or Scale Out 

Horizontal Scalability means adding more individual units of resource doing 

the same job (add an extra node to the cluster).  

2. Vertical Scalability or Scale Up 

Vertical Scalability means taking a single unit of resource (i.e. RAM) and 

making it larger. 
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‘Horizontal Scalability’ is said to be the better scalability option as we can scale 

indefinitely. On the other hand, ‘Vertical Scalability’ always runs into limits as 

increasing performance of a single node server has a finite level.  

 

Now, to pick the right database, we analyze the ‘Horizontal Scalability’ performance 

between SQL and NOSQL database. We find that the fundamental option to gain 

‘horizontal scalability’ in a distributed system is – ‘Sharding’. ‘Database Sharding’ 

can be simply defined as a ‘shared-nothing’ partitioning scheme. If we think of broken 

glass, we can get the concept of sharding - breaking our database down into smaller 

chunks called ‘shards’ and spreading those across a number of distributed servers. 

Sharding can be achieved in 2 ways – 

1. Sharding Manually: SQL database shard manually. 

2. Sharding Automatically: NOSQL database shard automatically. 

 

 

Figure 2.2 Horizontal Scalability vs. Vertical Scalability 
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Between the 2 types of sharding, it is found obvious that ‘Automatic Sharding’ is 

preferred for a distributed system. 

1. SQL database cannot shard automatically because of its table

In SQL, multiple tables may be locked for modification

those tables are spread across multiple shards/servers, it'll take more time to 

acquire the appropriate locks, update the data and release the locks. So, 

scalability is not well achieved in SQL database. 

2. To the contrary, a NOSQL datab

does not distribute a logical entity across multiple tables; it’s always stor

one place. They do not enforce referential integrity between these logical 

entities. They only enforce consistency inside a single entity and sometimes 

not even that. 

Here, we present an example to show the scenario how ‘Automatic Sharding’ enables

NOSQL database to scale in a better way.

 

If we were to write 20 entities to a database cluster with 3 

 

 

 

 

 

 

 

 

 

 

 

 Figure 2.3 NOSQL Performance Compared to SQL Performance in the context of 

‘Relational Property’ of SQL Database

 

Between the 2 types of sharding, it is found obvious that ‘Automatic Sharding’ is 

preferred for a distributed system. But – 

SQL database cannot shard automatically because of its table-based nature.

multiple tables may be locked for modification during transaction

those tables are spread across multiple shards/servers, it'll take more time to 

priate locks, update the data and release the locks. So, 

scalability is not well achieved in SQL database.  

To the contrary, a NOSQL database shard automatically as this database

does not distribute a logical entity across multiple tables; it’s always stor

one place. They do not enforce referential integrity between these logical 

entities. They only enforce consistency inside a single entity and sometimes 

Here, we present an example to show the scenario how ‘Automatic Sharding’ enables

OSQL database to scale in a better way.  

f we were to write 20 entities to a database cluster with 3 nodes [15] – 

NOSQL Performance Compared to SQL Performance in the context of 

‘Relational Property’ of SQL Database 
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Between the 2 types of sharding, it is found obvious that ‘Automatic Sharding’ is 

based nature. 

during transaction. If 

those tables are spread across multiple shards/servers, it'll take more time to 

priate locks, update the data and release the locks. So, 

ase shard automatically as this database 

does not distribute a logical entity across multiple tables; it’s always stored in 

one place. They do not enforce referential integrity between these logical 

entities. They only enforce consistency inside a single entity and sometimes 

Here, we present an example to show the scenario how ‘Automatic Sharding’ enables 

 

 

NOSQL Performance Compared to SQL Performance in the context of 
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 In NoSQL 

� We can write independently on all three nodes because the database does 

not need to synchronize between the nodes. 

� Client 1 might see changes on Node 1 before Client 2 has written all 20 

entities because there’s no need for a two-phase commit. 

 

In SQL  

A distributed RDBMS solution on the other hand needs to enforce ACID 

consistency across all three nodes: 

� RDBMS needs to read data from other nodes in order to ensure referential 

integrity because of synchronization. 

� Until all three nodes acknowledged a two phase commit, Client 1 will 

either not see any or will be blocked until that happened.  

All these happens during the transaction and blocks Client 2. 

 

So, it can be concluded that though SQL database can have manual sharding but it 

does not give good performance because of its table-based nature. On the other hand, 

NOSQL does not follow ‘Relational’ concept, so, it can provide better performance. So, 

NOSQL is our preferred choice under the issue of ‘Scalability’. 
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2.5 Chosen Database Approach – NOSQL 

For all the above 4 issues of ‘Schema’, ‘ACID vs. BASE Property’, ‘CAP Theorem’ and 

‘Scalability’ we find that NOSQL wins in all cases.  

Also, we present a table to show the list of popular big web sites that use NOSQL 

database as their database approach. 

       

NOSQL Database 
Popular Companies that are using NOSQL 

Database 

Cassandra Digg, Facebook, Twitter, Redit [16] [17] 

MongoDB Foursquare, The New York Times [18] 

HBase Facebook [19] 

DynamoDB Amazon  

BigTable Google 

CouchDB CERN, BBC, Interactive Mediums 

Voldemort LinkedIn 

Redis Facebook, Digg, GitHub [20] 

Riak Widescript, Western Communication 

 

 

 

 

Most of the big websites have moved to NOSQL database. So, we select NOSQL as 

our preferred database approach for cloud computing and aim to make further 

investigation on NOSQL. 

 

 

Table 2.1: List of sites that are using NOSQL database. The above table is the 

mirror reflection of importance of NOSQL database in cloud computing.  
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Chapter 3 

 

The NOSQL Movement 

 
 

The comparison study on ‘SQL vs. NOSQL’ leads us to enter into a new world of 

NOSQL database – a world that is built with non-relational concept. In this chapter, 

we aim to explore different branches of NOSQL database and show a performance 

analysis on 3 popular NOSQL databases in the context of cloud computing needs. 

 

3.1 Classification of NOSQL Database Models 

 

To understand the vast arena of NOSQL database concept, we first go through the 

possible categories of this database model. 

 

NOSQL data stores can be classified into four [21] main categories: 

1. Key-value Stores 

2. Column Family Stores 

3. Document Databases 

4. Graph Databases 

In the following sub-sections, each category is briefly described in the order of 

database model concept, example application, available NOSQL databases, strengths 

and weaknesses. 
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3.1.1 Key-value Stores 

Key-Value stores are considered as the most ubiquitous technology under the NoSQL 

banner. The main idea here is using a hash table where there is a unique key and a 

pointer to a particular item of data. [22] 

 

 

 

 
 

Typical Applications   Content caching (Focus on scaling to huge amounts of 

data, designed to handle massive load), logging, etc. 

Database Examples   DynamoDB, Redis, Voldemort.  

Strengths Fast lookups 

Weaknesses Stored data has no schema 

 

(a) 

 

Figure 3.1 Example of Key-value Store model. In (a), data is stored in a table with row-
column property in SQL database. In (b), each value has a unique key to store and 
retrieve data in Key-value Store database.  

(b) 

Table 3.1 Key-value Stores Use Case 
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3.1.2 Document Databases 

Document databases are essentially the next level of Key/value. The model is 

basically versioned documents that are collections of other key-value collections. The 

semi-structured documents are stored in formats like JSON. Document database 

allows nested values associated with each key that is not done in ‘Key-value Stores’ 

case. For that advantage, Document databases support querying more efficiently. 

 

 

 

 
  

Typical Applications   Web applications (Similar to Key-Value stores, but 

the DB knows what the Value is)  

Database Examples   CouchDB, MongoDB 

Strengths Tolerant of incomplete data [23] 

Weaknesses No standard query syntax  

 

(a) 

 

(b) 

Figure 3.2 Example of Document Databases model. In (a), data is stored in a table with row-
column property in SQL database. In (b), each unique key stores the whole document 
with nested collections of key-value. 

Table 3.2 Document Databases Use Case 
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3.1.3 Column Family Stores 

 

Column Family Stores were created to store and process very large amounts of data 

distributed over many machines. Like the concept of ‘Key-value Stores’, there are still 

keys but they point to multiple columns. Then, the columns are arranged by column 

family. 

 

 

 

 
  

Typical Applications Distributed file systems 

Database Examples   Cassandra, HBase, BigTable, HyperTable 

Strengths Fast lookups, good distributed storage of data 

Weaknesses Very low-level API 

 

(a) 

 

(b) 

Figure 3.3 Example of Column Family Stores model. In (a), data is stored in a table with 
row-column property in SQL database. In (b), each unique key points to multiple 
columns. 

 

Table 3.3 Column Family Stores Use Case 
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3.1.4 Graph Databases 

“Relational database is a collection loosely connected tables” whereas “Graph is a 

multi-relational graph.” The main drawback of SQL database is that – each time we 

have to define relationship between tables by using constraints because of its rigid 

structure of tables and row-columns. So, relationships are weak in SQL database. 

Graph databases solve the problem as relationships are first class citizen for these 

databases. In this category of NOSQL database, a flexible graph model is used which, 

again, can scale across multiple machines and can map data using relations. 

 

 

 

 
  

 

(a) 

 

(b) 

Figure 3.4 Example of Graph Databases model. In (a), a schema for Figure 3.1 (a) is drawn 
to show the rigid relationship between tables in SQL database. In (b), a Graph 
database model is drawn to show the flexibility of relationships. [24] 
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3.2 A Case of Study:  Evaluating NOSQL Performance using 

YCSB Benchmark Results 

 

 In the previous section, we presented a brief introduction on NOSQL database.  

The immense field of NOSQL technology, coupled with a lack of apples-to-apples 

performance comparisons, makes it difficult to understand the tradeoffs between 

systems and the workloads for which they are suited. So, in our case study we aim 

to measure performance of some selected NoSQL products and to determine the 

best use cases of each product for different internet services. 

We selected 3 NOSQL databases to conduct study by recollecting popular CAP 

theorem image by Eric Brewer. 

 

 

Typical Applications   Social networking, Recommendations (Focus on 

modeling the structure of data – interconnectivity) 

Database Examples   Neo4J, InfoGrid, Infinite Graph 

Strengths Graph algorithms e.g. shortest path, connectedness,  

n degree relationships, etc. 

Weaknesses Has to traverse the entire graph to achieve a 

definitive answer. Not easy to cluster. 

 
NOSQL 

Database 
CAP Property Data Model 

1 MongoDB 
CP 

(Consistency & Partition Tolerance) 
Document Databases 

2 Cassandra 
AP 

(Availability & Partition Tolerance) 
Column Family Stores 

3 HBase CP 

(Consistency & Partition Tolerance) 
Column Family Stores 

Table 3.4 Graph Databases Use Case 

Table 3.5 Selected NOSQL Databases for Benchmarking 



www.manaraa.com

27 
 

 

    

3.2.1 Test Framework: YCSB 

 

To analyze performance of our selected NOSQL databases, we choose to consider the 

benchmark test results of “Yahoo! Cloud Serving Benchmark” (YCSB) framework. 

The tool was first invented by 'Yahoo! in the year 2010 [25]. This tool allows 

benchmarking multiple systems and comparing them by creating “work loads”.  

Using this tool, one can install multiple systems on the same hardware configuration, 

and run the same workloads against each system. Then it is possible to plot the 

performance of each system (for example, as latency versus throughput curves) to see 

when one system does better than another. [26] 

YCSB currently supports - Cassandra, HBase, MongoDB, Voldemort and JDBC.  

 

In this section, we give an overview on YCSB work procedure. 

 

YCSB Architecture 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.5 YCSB Architecture 
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The YCSB Client is a Java program for generating the data to be loaded to the 

database, and generating the operations which make up the workload.  

YCSB has four types of operations–  

1. Insert  

2. Update 

3.  Read and  

4. Scan.  

The architecture of the client is shown in Figure 3.5. 

DB Interface Layer   

YCSB Client uses the DB interface layer to send commands to the configured 

database i.e. Cassandra.  

 

Workload Executor  

The Workload defines the data that can be loaded and executed in two 

executable phases:  

1. The Loading phase, which defines the data to be inserted and 

2.  The Transactions phase, which defines the operations to be executed 

against the data set. [27] 

 

Interaction between Workload Executor and DB Interface Layer  

1. Workload executor drives multiple client threads.  

2. Each thread executes a sequential series of operations by making calls to 

the database interface layer, both to load the database (the load phase) 

and to execute the workload (the transaction phase). 

3. At the end of the experiment, the statistics module aggregates the 

measurements and reports average, 95th and 99th percentile latencies, 

and either a histogram or time series of the latencies. 
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3.2.2 YCSB Benchmark Results 

 

The YCSB Benchmark Test Case that we analyzed has some system specifications.  

 

Selected Versions of Databases 

1. MongoDB-1.8.1 

2. Cassandra-0.7.4 

3. HBase-0.90.2 

Test Cases 

The benchmark is conducted on the basis of three test cases  [28] – 

1. Insert Only 

2. Read Only 

3. Read & Update 

Test Workload 

The test workload is as follows. 

Insert Only 

Enter 50 million 1K-sized records to the empty DB. 

Read Only 

Search the key in the Zipfian Distribution1 for a one hour period on the DB 

that contains 50 million 1K-sized records. 

Read & Update 

Conduct ‘Read & Update’ one-on-one instead of ‘Read’ under the identical 

conditions of ‘Read Only’. 

                                                 

1 The Zipf distribution, sometimes referred to as the zeta distribution, is a discrete distribution 
commonly used in linguistics, insurance, and the modeling of rare events. 
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Test Results 

The benchmark test results are shown in the 
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Figure 3.6 YCSB Benchmark Test Results. 

                 In (a), the performance of 3 databases are shown for test case 
  In (b), the performances of 3 databases are shown for test case 
  In (c), the performances of 3 databases are shown for test case 

(a) Insert Only 

(b) Read Only 

(c) Read & Update  

 

results are shown in the following figure. 
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Figure 3.6 YCSB Benchmark Test Results.  

In (a), the performance of 3 databases are shown for test case – Insert Only.
In (b), the performances of 3 databases are shown for test case – Read Only.
In (c), the performances of 3 databases are shown for test case – Read & Update.
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MongoDB

Cassandra

HBase

 

MongoDB

Cassandra

HBase

 

MongoDB

Cassandra

HBase

Insert Only. 
Read Only. 
Read & Update. 
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3.2.3 Summary of Benchmark Test Result 

 

We summarize the benchmark test result in 3 test cases. 

 

                     

 

The benchmark test concludes the following comparison results – 

1. ‘Read Only’ and ‘Read & Update’ are much slower than ‘Insert Only’ 

operations in these NoSQL solutions. 

2. Cassandra’s performance in ‘Insert Only’ and ‘Read & Update’ was better 

than the other two products. But Cassandra is slower in reading than 

writing. 

3. HBase’s performance was better than Cassandra in ‘Read Only’. 

HBase also shows relatively good performance in ‘Insert Only’ and ‘Read & 

Update’. 

4. MongoDB’s throughput in all three conditions was the lowest of the 

three products. 

In the next section, we examine the reason behind the performance variation of each 

database. 

 Test Case 
MongoDB 

Performance 

Cassandra 

Performance 

HBase 

Performance 

1. Insert Only 

Satisfactory but 

lowest amongst 

3 databases 

Outstanding 

throughput 
Relatively Good 

2. Read Only 

Lowest 

amongst 3 

databases 

Relatively Good 
Highest amongst 

3 databases 

3. Read & Update 

Lowest 

amongst 3 

databases 

Highest 

amongst 3 

databases 
Relatively Good 

Table 3.6 Summary of YCSB Benchmark Test Result 
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3.3 Benchmark Result Analysis 

The benchmark test in the previous section gave different performance result for the 

three databases and we summarized the result with 4 conclusions. In this section, we 

aim to analyze each result case in the context of Insert/Write and Read operations for 

the 3 selected databases – Cassandra, HBase and MongoDB. 

 

3.3.1 Result Case – 1:  

‘Read Only’ and ‘Read & Update’ Operation are much Slower than 

‘Insert Only’ operation 

 

Both Cassandra and HBase follow Column Family Stores Data model. Internal 

architecture of these databases is based on Google’s BigTable model, although, 

Cassandra was directly influenced by Amazon’s Dynamo. So, we analyze this result 

case in the context of BigTable’s internal structure.  

 

We first present the data model of BigTable. 
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BigTable Data Model

 

 

 

 

 

 

 

 

 

 

 

 

BigTable is a Column

Multidimensional Sorted Map format and has the 

column key> data structure. 

 

Column family is a basic unit that stores data with column groups that are 

related to each other. 

(i.e. one file per column family), and physically sort the order of data by 

column name and timestamp

that a disk block size can store more data. On the other hand, since data

within a column family usually has a similar pattern, data compression can be 

very effective. 

 

Based on this data model, BigTable conducts its Write/Read operations. Now, from 

the architectural perspective, we identify the reason of performance difference

Write/Read operation for Cassandra and HBase.

Figure 3.7 Column

 

BigTable Data Model 

is a Column-Oriented Database that stores data in a 

Multidimensional Sorted Map format and has the <row key, column family, 

data structure.  

is a basic unit that stores data with column groups that are 

related to each other. BigTable store each column family contiguously on disk 

one file per column family), and physically sort the order of data by 

column name and timestamp. After that, the sorted data will be compressed so 

that a disk block size can store more data. On the other hand, since data

within a column family usually has a similar pattern, data compression can be 

Based on this data model, BigTable conducts its Write/Read operations. Now, from 

the architectural perspective, we identify the reason of performance difference

Cassandra and HBase. 

Column-Oriented Database Model of BigTable
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that stores data in a 

<row key, column family, 

is a basic unit that stores data with column groups that are 

contiguously on disk 

one file per column family), and physically sort the order of data by row id, 

. After that, the sorted data will be compressed so 

that a disk block size can store more data. On the other hand, since data 

within a column family usually has a similar pattern, data compression can be 

Based on this data model, BigTable conducts its Write/Read operations. Now, from 

the architectural perspective, we identify the reason of performance difference in 

 

Oriented Database Model of BigTable 
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          Write Operation in BigTable 

Figure 3.7 shows the internal structure of Write/Read path in BigTable – 

 

 

 

 

 

 

 

 

 

 

 

  

BigTable model is highly optimized for write operation with sequential write. 

In BigTable, data is written basically with the append method. In other words, 

when modifying data, the updates are appended to a file, rather than an in-

place update in the stored file. 

Write operation is completed in 2 steps – 

1. When a write operation is inserted, it is first placed in a memory space 

called memtable. All the latest update therefore will be stored at the 

memtable at first. 

2. If the memtable is full, then the whole data is stored in a file called 

SSTable (Sorted String Table). The table is sorted by String key.  

Over a period of time there will be multiple SSTables on the disk that 

store the data. 

 

Figure 3.8 Data Read/Insert Path of Google’s BigTable 
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Read Operation in BigTable

 

Now, while doing ‘Read’ operation

if data is not   present in the memtable

1. Whenever a read request is received, the systems will first lookup the 

Memtable by its ‘row key

2. If not, it will look at the on

 

We call this the ‘Merged read’ as the system need to look at multiple places 

for the data. SSTable

detect the absence of the row

returns positive will the system be doing a detail lookup within the SSTable.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.8

 

in BigTable 

‘Read’ operation, an extra amount of time is needed because 

present in the memtable, we need to do ‘Merge Read’

Whenever a read request is received, the systems will first lookup the 

row key’ to see if it contains the data. [29] 

If not, it will look at the on-disk SSTable to see if the row-key is there. 

We call this the ‘Merged read’ as the system need to look at multiple places 

SSTable has a companion Bloom filter such that it can rapidly 

detect the absence of the row-key. In other words, only when the bloom filter 

positive will the system be doing a detail lookup within the SSTable.

Figure 3.8 Read Operation in Google’s BigTable 
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time is needed because 

‘Merge Read’ –  

Whenever a read request is received, the systems will first lookup the 

 

key is there.  

We call this the ‘Merged read’ as the system need to look at multiple places 

such that it can rapidly 

the bloom filter 

positive will the system be doing a detail lookup within the SSTable. 
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Another concept to improve read efficiency is – ‘Periodic Data Compaction’. 

As we can imagine, it can be quite inefficient for the read operation when there 

are too many SSTables scattering around. Therefore, the system periodically 

merges the SSTable, since, each of the SSTable is individually sorted by key, 

a simple ‘Merge sort’ is sufficient to merge multiple SSTables into one. The 

merge mechanism is based on a logarithm property where two SSTable of the 

same size will be merging into a single SSTable, will doubling the size. 

Therefore the number of SSTable is proportion to O(logN) where N is the 

number of rows. 

 

So, we have discussed the issues behind ‘Write’ and ‘Read’ operation. In the case of 

‘Write’ operation, at first, data is recorded in the memory and then, moved to the 

actual disk only after a certain amount has been accumulated. It thus improves the 

efficiency of ‘Write’ operation. On the other hand, the concept of ‘Merge Read’ and 

‘Periodic Data Compaction’ requires extra time to complete ‘Read’ operation.  

  

3.3.2 Result Case – 2: 

Cassandra Performance – Faster in Writing than Reading 

 

As we mentioned before, Cassandra additionally uses Amazon’s Dynamo Model 

along with Google’s BigTable model. Cassandra follows Dynamo’s DHT (distributed 

hash table) model to partition its data. It is known as ‘Consistent Hashing’. 

Through ‘Consistent Hashing’, each machine (node) is associated with a particular 

id that is distributed in a keyspace (e.g. 128 bit). The entire data element is also 

associated with a key (in the same key space). The server owns all the data whose 

key lies between its id and the preceding server's id.  
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Now, in this analysis, we state the steps that Cassandra goes through to complete 

‘Write’ and ‘Read’ operation. Thus, difference between ‘Write’ and ‘Read’ 

performance will be revealed.

 

Write Operation in Cassandra

 

The steps during ‘Write’ operation in Cassandra is as follows 

1. Client submits its write request to a single, random Cassandra node.

2. This node acts as a proxy and writes the data to the cluster

of nodes is stored as a “ring” of nodes

3. Now, using the ‘Replication Placement Strategy’

to N nodes. [31] 

4. Finally, the node waits for the N successes and the

client. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.9

 

n this analysis, we state the steps that Cassandra goes through to complete 

’ operation. Thus, difference between ‘Write’ and ‘Read’ 

performance will be revealed. 

Write Operation in Cassandra 

The steps during ‘Write’ operation in Cassandra is as follows – 

Client submits its write request to a single, random Cassandra node.

This node acts as a proxy and writes the data to the cluster 

of nodes is stored as a “ring” of nodes. 

Replication Placement Strategy’, writes are replicated 

Finally, the node waits for the N successes and then returns success to the 

Figure 3.9 Simple Partition Strategies in Cassandra
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n this analysis, we state the steps that Cassandra goes through to complete 

’ operation. Thus, difference between ‘Write’ and ‘Read’ 

  

Client submits its write request to a single, random Cassandra node. [30] 

 where cluster 

rites are replicated 

n returns success to the 

 

Simple Partition Strategies in Cassandra 
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In case any node is failed, the write operation can be retried at a later using 

‘Hinted handoff’. According to this process, the failed operation will pick a 

random node as a handoff node and write the request with a hint telling it to 

forward the write request back to the failed node after it recovers. The 

handoff node will then periodically check for the recovery of the failed node 

and forward the write to it. Therefore, the original node will eventually 

receive the entire write request. 

 In this way, Cassandra performs a faster ‘Write’ operation that ensures 

‘Availability’ (Figure 2.1: CAP Theorem). 

 

Read Operation in Cassandra  

             

The steps during ‘Write’ operation in Cassandra is as follows –  

1.  A client makes a read request to a random node. [32] 

2. The node acts as a proxy determining the nodes having copies of data.  

3.  The node requests the corresponding data from each node. 

4. Now, while returning data, Cassandra allows the client to select the 

strength of the read consistency –  

Single read: The proxy returns the first response it gets. This can easily 

return stale data. [33] 

Quorum read: The proxy waits for a majority to respond with the same 

value. 

5. Finally, a value will be returned to client and thus, ‘Read’ operation is 

completed.  

In the background, the proxy also performs ‘Read Repair’ on any 

inconsistent responses. According to that method, when the client performs  
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a ‘Read’, the proxy node will issue N reads but only wait for R copies of 

responses and return the one with the latest version. In case some nodes 

respond with an older version, the proxy node will send the latest version to 

them asynchronously; hence these left-behind nodes will still eventually 

catch up with the latest version. 

We state an example here. For example, we have a key “A” with a value of 

“123” in our cluster. Now we update “A” to be “456”. The write is sent to N 

different nodes, each of which takes some time to write the value. Now we 

ask for a read of “A”. Some of those nodes might still have “123” for the 

value while others have “456”. They will all eventually return “456”. This is 

also known as ‘Eventual Consistency’.  

 

The situation in ‘Quorum Read’ makes it much more difficult to get stale data but 

this is the reason why ‘Read’ operation in Cassandra tends to be slower than ‘Write’ 

operation. 

So, we have discussed the issues behind ‘Write’ and ‘Read’ operation. Since the 

success of replicated writing is not guaranteed, the data suitability is checked in the 

reading stage. That makes Cassandra to give slower performance in ‘Read’ operation 

than ‘Write’ operation. 
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3.3.3 Result Case – 3: 

HBase Performance – Faster in Reading compared to Cassandra 

 

HBase has the same structure as BigTable. Based on the BigTable, HBase uses the 

Hadoop Distributed File System (HDFS) as its data storage engine. The advantage 

of this approach is then HBase doesn't need to worry about data replication, data 

consistency and resiliency because HDFS has handled it already. 

 

So far we have analyzed that Cassandra is faster in ‘Write’ operation than ‘Read’ 

operation. But Figure 3.6(b) shows that HBase has better performance in ‘Read’ 

operation than Cassandra. So, in this section, we aim to identify the reason for what 

HBase shows the faster performance in ‘Reading’ than Cassandra by analyzing both 

‘Write’ and ‘Read’ paths of HBase Memstore.  

  

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.10 Memstore Usage in HBase Read/Write Paths 
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Write Operation in HBase  

 

The ‘Write’ paths in HBase can be described as follows – 

� RegionServer (RS) receives write request and it directs the request to 

specific Region. [34] 

� Each Region stores set of rows. Rows data can be separated in multiple 

Column Families (CFs).  

� Data of particular CF is stored in HStore which consists of Memstore 

and a set of HFiles.  

� Memstore is kept in RS main memory, while HFiles are written to 

HDFS. 

�  When write request is processed, data is first written into the Memstore. 

Then, when certain thresholds are met (obviously, main memory is well-

limited) Memstore data gets flushed into HFile. 

 

Read Operation in HBase Memstore 

 

The reading end things in HBase are simple –  

HBase first checks if requested data is in Memstore, then goes to HFiles and 

returns merged result to the user. 

 

The discussion concludes that HBase only ‘writes’ on a single region in the beginning, 

and receives requests on only one node. While ‘reading’, HBase only reads data once. 

On the other hand, Cassandra reads the data three times to check data suitability. 

So, ‘Reading’ performance of HBase is faster compared to Cassandra. 
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3.3.4 Result Case – 4: 

MongoDB Performance – Lowest Throughput among the 3 Databases 

 

The benchmark test of YCSB in Section 3.2 shows that MongoDB has the lowest 

performance in all 3 cases among the 3 databases. We identify the reason behind the 

scenario in this section –  

1. Unlike Cassandra and HBase, MongoDB does not follow ‘Column Family 

Stores’ data model. Rather, MongoDB uses a ‘Document Database’ model. 

According to this data model, each key is associated with a nested amount of 

values. So, memory size plays an important role in MongoDB. MongoDB 

operates on a memory base and places high performance above data 

scalability. If reading and writing is conducted within the usable memory, 

then high-performance is possible. However, performance is not guaranteed if 

operations exceed the given memory. That is the reason why MongoDB shows 

poor performance in all 3 cases. 

2. However, the MongoDB has been found to record greater performance than 

Cassandra or HBase, if 300 thousand records are taken instead of 50 million 

as workload.  

So, MongoDB can be used quickly, schema-free when using a certain amount of data. 

 

To conclude the performance result, each NOSQL database has its distinct 

functionalities. MongoDB is used in Foursquare, SourceForge, The New York Times  

[Table 2.1]. Cassandra is used in social websites like Digg, Facebook, Twitter [Table 

2.1]. HBase is also used in Facebook [Table 2.1]. So, every database has usage in 

cloud computing. All we need to pick the appropriate database tool according to the 

need of application.  
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Chapter 4 

 

Big Data Analytics: 

Hadoop & MapReduce – A New Challenge 

 

Big data is big news and so too analytics on big data. Technologies for analyzing big 

data are evolving rapidly and there is significant interest in new analytic approaches 

such as Hadoop and MapReduce [35]. We analyzed a newly evolving NOSQL 

database in previous chapter. Now, in this chapter, we aim to make investigation on 

Hadoop and MapReduce. 

 

4.1 MapReduce 

  

MapReduce is a technique popularized by Google that distributes the processing of 

very large multi-structured data files across a large cluster of machines [36]. High 

performance is achieved by breaking the processing into small units of work that 

can be run in parallel across the hundreds, potentially thousands, of nodes in the 

cluster.  
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To quote the seminal paper on MapReduce:  

“MapReduce is a programming model and an associated implementation for 

processing and generating large data sets. Programs written in this 

functional style are automatically parallelized and executed on a large cluster 

of commodity machines. This allows programmers without any experience 

with parallel and distributed systems to easily utilize the resources of a large 

distributed system.”  

The key point to note from this quote is that MapReduce is a programming model, 

not a programming language, i.e., it is designed to be used by programmers, rather 

than business users.  

 So, if we have to then we can define MapReduce in one sentence as – 

“MapReduce is a programming model for automating parallel computing.” 

 

 

4.1.1 Fundamental Pieces of MapReduce query 

 

There are two fundamental pieces of a MapReduce query –  

           Map  

The master node takes the input, chops it up into smaller sub-problems, and 

distributes those to worker nodes [37]. A worker node may do this again in 

turn, leading to a multi-level tree structure. The worker node processes that 

smaller problem, and passes the answer back to its master node. 

 

Reduce  

The master node then takes the answers to all the sub-problems and 

combines them in a way to get the output - the answer to the problem it was 

originally trying to solve. 
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Programs written in this functional style are automatically parallelized and 

executed on a large cluster of commodity machines. The runtime system takes care 

of the details of partitioning the input data, scheduling the program's execution 

across a set of machines, handling machine failures, and managing the required 

inter-machine communication. The user of the MapReduce library expresses the 

computation as two functions: Map and Reduce. Map, written by the user, takes an 

input pair and produces a set of intermediate key/value pairs. The MapReduce 

library groups together all intermediate values associated with the same 

intermediate key I and passes them to the Reduce function. The Reduce function, 

also written by the user, accepts an intermediate key I and a set of values for that 

key. It merges together these values to form a possibly smaller set of values. 

Typically just zero or one output value is produced per Reduce invocation. The 

intermediate values are supplied to the user's reduce function via an iterator. This 

allows handling lists of values that are too large to fit in memory. 

 

 

 
 

 

 

 

 

 

 

 

Figure 4.1 MapReduce Execution Overview 
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4.1.2 MapReduce Usage 

 

MapReduce aids organizations in processing and analyzing large volumes of multi-

structured data. Application examples include indexing and search, graph analysis, 

text analysis, machine learning, data transformation, and so forth. These types of 

applications are often difficult to implement using the standard SQL employed by 

relational DBMSs.  

The procedural nature of MapReduce makes it easily understood by skilled 

programmers. It also has the advantage that developers do not have to be concerned 

with implementing parallel computing – this is handled transparently by the system. 

Although MapReduce is designed for programmers, non-programmers can exploit the 

value of prebuilt MapReduce applications and function libraries. Both commercial 

and open source MapReduce libraries are available that provide a wide range of 

analytic capabilities. Apache Mahout, for example, is an open source machine-

learning library of “algorithms for clustering, classification and batch-based 

collaborative filtering” that are implemented using MapReduce. 

 

 

4.1.3 Application Development 

MapReduce programs are usually written in Java, but they can also be coded in 

languages such as C++, Perl, Python, Ruby, R, etc. These programs may process 

data stored in different file and database systems. At Google, for example, 

MapReduce was implemented on top of the Google File System (GFS).  

 

One of the main deployment platforms for MapReduce is the open source Hadoop 

distributed computing framework provided by Apache Software Foundation. 

Hadoop supports MapReduce processing on several file systems, including the  
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Hadoop Distributed File System (HDFS), which was motivated by GFS. Hadoop 

also provides Hive and Pig, which are high-level languages that generate 

MapReduce programs. Several vendors offer open source and commercially 

supported Hadoop distributions; examples include Cloudera, DataStax, 

Hortonworks (a spinoff from Yahoo) and MapR. Many of these vendors have added 

their own extensions and modifications to the Hadoop open source platform.  

Another direction of vendors is to support MapReduce processing in relational 

DBMSs. These are implemented as in-database analytic functions that can be used in 

SQL statements. These functions are run inside the database system, which enables 

them to benefit from the parallel processing capabilities of the DBMS. Supported in 

the Teradata Aster MapReduce Platform, the Aster Database provides a number of 

built-in MapReduce functions for use with SQL. It also includes an interactive 

development environment, Aster Developer Express, for programmers to create their 

own MapReduce functions.  

 

4.2 Hadoop  

As we have stated before, Google was the first to publicize MapReduce, a system 

they had used to scale their data processing needs. This system aroused a lot of 

interest because many other businesses were facing similar scaling challenges, and 

it wasn't feasible for everyone to reinvent their own proprietary tool. Doug Cutting2 

saw an opportunity and led the charge to develop an open source version of this 

MapReduce system called Hadoop, Yahoo and others rallied around to support this 

effort. Today, Hadoop is a core part of the computing infrastructure for many web  

 

                                                 
2
  Douglas Read Cutting is an advocate and creator of open-source search technology. He originated 

Lucene and, with Mike Cafarella, Nutch, both open-source search technology projects which are now 
managed through the Apache Software Foundation. 
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companies, such as Yahoo, Facebook, LinkedIn, and Twitter. Many more traditional 

businesses, such as media and telecom, are beginning to adopt this system too. 

Here, we describe the fundamental idea of Hadoop. 

 

Hadoop is a generic processing framework designed to execute queries and other 

batch read operations against massive datasets that can be tens or hundreds of 

terabytes and even petabytes in size. The data is loaded into or appended to the 

Hadoop Distributed File System (HDFS). Hadoop then performs brute force scans 

through the data to produce results that are output into other files. It probably does 

not qualify as a database since it does not perform updates or any transactional 

processing. Hadoop also does not support such basic functions as indexing or a SQL 

interface, although there are additional open source projects underway to add these 

capabilities.  

  

Hadoop operates on massive datasets by horizontally scaling (aka scaling out) the 

processing across very large numbers of servers through an approach called 

MapReduce. Vertical scaling (aka scaling up), i.e., running on the most powerful 

single server available, is both very expensive and limiting. There is no single server 

available today or in the foreseeable future that has the necessary power to process so 

much data in a timely manner.  

 

 

 

 

 

 

 

 

 
 

Figure 4.2 Clusters of machine running Hadoop at Yahoo! (Source: Yahoo!) 
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Hundreds or thousands of small, inexpensive, commodity servers do have the power if 

the processing can be horizontally scaled and executed in parallel. Using the 

MapReduce approach, Hadoop splits up a problem, sends the sub-problems to 

different servers, and lets each server solve its sub-problem in parallel. It then 

merges all the sub-problem solutions together and writes out the solution into files 

which may in turn be used as inputs into additional MapReduce steps.  

 

Hadoop has been particularly useful in environments where massive server farms are 

being used to collect the data. Hadoop is able to process parallel queries as big, 

background batch jobs on the same server farm. This saves the user from having to 

acquire additional hardware for a database system to process the data. Most 

importantly, it also saves the user from having to load the data into another system. 

The huge amount of data that needs to be loaded can make this impractical. 

 

 

4.2.1 What is Hadoop Good For 

 

When the original MapReduce algorithms were released, and Hadoop was 

subsequently developed around them, these tools were designed for specific uses. The 

original use was for managing large data sets that needed to be easily searched. As 

time has progressed and as the Hadoop ecosystem has evolved, several other specific 

uses have emerged for Hadoop as a powerful solution.  

 

In this part, we summarize Hadoop usage. 

 

Large Data Sets  

MapReduce paired with HDFS is a successful solution for storing large 

volumes of unstructured data.  
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Scalable Algorithms  

Any algorithm that can scale too many cores with minimal inter-process 

communication will be able to exploit the distributed processing capability of 

Hadoop.  

 

Log Management  

Hadoop is commonly used for storage and analysis of large sets of logs from 

diverse locations. Because of the distributed nature and scalability of Hadoop, 

it creates a solid platform for managing, manipulating, and analyzing diverse 

logs from a variety of sources within an organization.  

 

Extract-Transform-Load (ETL) Platform  

Many companies today have a variety of data warehouse and diverse 

relational database management system (RDBMS) platforms in their IT 

environments. Keeping data up to date and synchronized between these 

separate platforms can be a struggle. Hadoop enables a single central 

location for data to be fed into, then processed by ETL-type jobs and used to 

update other, separate data warehouse environments.  

 

 

4.2.2 Hadoop Distributed File System (HDFS) 

 

The Hadoop Distributed File System (HDFS) is designed to store very large data 

sets reliably, and to stream those data sets at high bandwidth to user applications. 

In a large cluster, thousands of servers both host directly attached storage and 

execute user application tasks. By distributing storage and computation across 

many servers, the resource can grow with demand while remaining economical at 

every size. 
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HDFS is the file system component of Hadoop. HDFS stores file system metadata 

and application data separately. Hadoop has a variety of node types within each 

Hadoop cluster; these include DataNodes, NameNodes, and EdgeNodes. Names of 

these nodes can vary from site to site, but the functionality is common across the 

sites.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The base node types for a Hadoop cluster are described below [38] –  

 

            NameNode 

The NameNode is the central location for information about the file system 

deployed in a Hadoop environment. An environment can have one or two 

NameNodes, configured to provide minimal redundancy between the 

NameNodes. The NameNode is contacted by clients of the Hadoop Distributed 

File System (HDFS) to locate information within the file system and provide 

updates for data they have added, moved, manipulated, or deleted.  

 

Figure 4.3 HDFS Architecture 
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DataNode 

DataNodes make up the majority of the servers contained in a Hadoop 

environment. Common Hadoop environments will have more than one 

DataNode, and oftentimes they will number in the hundreds based on capacity 

and performance needs. The DataNode serves two functions: It contains a 

portion of the data in the HDFS and it acts as a computing platform for 

running jobs, some of which will utilize the local data within the HDFS.  

 

EdgeNode 

The EdgeNode is the access point for the external applications, tools, and users 

that need to utilize the Hadoop environment. The EdgeNode sits between the 

Hadoop cluster and the corporate network to provide access control, policy 

enforcement, logging, and gateway services to the Hadoop environment. A 

typical Hadoop environment will have a minimum of one EdgeNode and more 

based on performance needs. 

 

4.2.3 MapReduce in Hadoop 

 

HDFS delivers inexpensive, reliable, and available file storage. That service alone, 

though, would not be enough to create the level of interest, or to drive the rate of 

adoption, that characterizes Hadoop over the past several years. The second major 

component of Hadoop is the parallel data processing system called MapReduce. 

Conceptually, MapReduce is simple. 

 

MapReduce includes a software component called the job scheduler. The job 

scheduler is responsible for choosing the servers that will run each user job, and for 

scheduling execution of multiple user jobs on a shared cluster. The job scheduler 

consults the NameNode for the location of all of the blocks that make up the file or  



www.manaraa.com

 

 

files required by a job. Each of those servers is instructed to run the user’s analysis 

code against its local block or blocks. The MapReduce processing infrastructure 

includes an abstraction called an 

individual records. There is special processing built in to reassemble records broken 

by block boundaries. The user code that implements a map job can be virtually 

anything. MapReduce allows developers to write and deploy code that runs directly 

on each DataNode server in the cluster. That code understands the format of the data 

stored in each block in the file,

number of occurrences of a single word, for example) or much more complex ones (e.g. 

natural language processing, pattern detection and machine learning, feature 

extraction, or face recognition).

At the end of the map phase of a job, results are collected and filtered by a 

MapReduce guarantees that data will be delivered to the reducer in sorted

output from all mappers is collected and passed through a 

The sorted output is then passed to the reducer for processing. Results are typically 

written back to HDFS. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4

 

files required by a job. Each of those servers is instructed to run the user’s analysis 

code against its local block or blocks. The MapReduce processing infrastructure 

includes an abstraction called an input split that permits each block to be broken into 

individual records. There is special processing built in to reassemble records broken 

by block boundaries. The user code that implements a map job can be virtually 

anything. MapReduce allows developers to write and deploy code that runs directly 

taNode server in the cluster. That code understands the format of the data 

stored in each block in the file, and can implement simple algorithms (count the 

number of occurrences of a single word, for example) or much more complex ones (e.g. 

e processing, pattern detection and machine learning, feature 

extraction, or face recognition). 

At the end of the map phase of a job, results are collected and filtered by a 

MapReduce guarantees that data will be delivered to the reducer in sorted

output from all mappers is collected and passed through a shuffle and sort 

The sorted output is then passed to the reducer for processing. Results are typically 

Figure 4.4 Model of Hadoop MapReduce 
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files required by a job. Each of those servers is instructed to run the user’s analysis 

code against its local block or blocks. The MapReduce processing infrastructure 

that permits each block to be broken into 

individual records. There is special processing built in to reassemble records broken 

by block boundaries. The user code that implements a map job can be virtually 

anything. MapReduce allows developers to write and deploy code that runs directly 

taNode server in the cluster. That code understands the format of the data 

and can implement simple algorithms (count the 

number of occurrences of a single word, for example) or much more complex ones (e.g. 

e processing, pattern detection and machine learning, feature 

At the end of the map phase of a job, results are collected and filtered by a reducer. 

MapReduce guarantees that data will be delivered to the reducer in sorted order, so 

shuffle and sort process. 

The sorted output is then passed to the reducer for processing. Results are typically 
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Because of the replication built into HDFS, MapReduce is able to provide some other 

useful features. For example, if one of the servers involved in a MapReduce job is 

running slowly — most of its peers have finished, but it is still working — the job 

scheduler can launch another instance of that particular task on one of the other 

servers in the cluster that stores the file block in question. This means that 

overloaded or failing nodes in a cluster need not stop, or even dramatically slow 

down, a MapReduce job. 

 

An important part of our thesis includes Hadoop configuration and testing 

MapReduce function on Hadoop framework. We have performed this task on single 

node cluster. This paper shows the steps of ‘Configuring Virtual Machines with 

Hadoop’ in Appendix A and then, an experiment is included on ‘Testing MapReduce 

Program’ in Appendix B. 
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Chapter 5 

 

Hive – Data Warehouse  

Using Hadoop 

 

In the previous chapter, we investigated on popular Hadoop framework. One 

disadvantage of Hadoop is that it is not easy for end users, especially for the ones who 

are not familiar with map/reduce. Hadoop lacked the expressibility of popular query 

languages like SQL and as a result users ended up spending hours to write programs 

for typical analysis [39]. So, it is very clear that in order to really empower the 

companies to analyze their data more productively, it is necessary to improve the 

query capabilities of Hadoop. Bringing this data closer to users is what inspired to 

build Hive. This paper focuses on Hive because it has gained the most acceptance in 

the industry like Facebook and also because it’s SQL-like syntax makes it easy to use 

by non-programmers who are comfortable using SQL.  

 

In this chapter, we aim to investigate on Hive and make an experiment on Hive 

wrapper on top of Hadoop. 
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5.1 Hive 

 
Hive is a data warehouse system for Hadoop that facilitates easy data 

summarization, ad-hoc queries, and the analysis of large datasets stored in Hadoop 

compatible file systems. Hive provides a mechanism to project structure onto this 

data and query the data using a SQL-like language called HiveQL. The query 

language can be easily understood by anyone familiar with SQL. At the same time 

this language also allows traditional map/reduce programmers to plug in their 

custom mappers and reducers when it is inconvenient or inefficient to express this 

logic in HiveQL. 

 

 

5.2 Hive Architecture 

The main components of Hive are illustrated in Figure 5.1. HiveQL statements can 

be entered using a command line or Web interface, or may be embedded in 

applications that use ODBC and JDBC interfaces to the Hive system. The Hive 

Driver system converts the query statements into a series of MapReduce jobs.  

 

The main components of Hive are – 

UI 

The user interface for users to submit queries and other operations to the 

system. Currently the system has a command line interface and a web based 

GUI is being developed. 

 

 

 

 



www.manaraa.com

57 
 

 

 

Driver 

The component which receives the queries. This component implements the 

notion of session handles and provides execute and fetch APIs modeled on 

JDBC/ODBC interfaces. 

 

Compiler 

The component that parses the query, does semantic analysis on the different 

query blocks and query expressions and eventually generates an execution 

plan with the help of the table and partition metadata looked up from the 

Metastore. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Metastore 

The component that stores all the structure information of the various table 

and partitions in the warehouse including column and column type  

 

Figure 5.1 Hive Architecture 
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information, the serializers and deserializers necessary to read and write 

data and the corresponding hdfs files where the data is stored. 

 

Execution Engine 

The component which executes the execution plan created by the compiler. 

The plan is a DAG of stages. The execution engine manages the dependencies 

between these different stages of the plan and executes these stages on the 

appropriate system components. 

 

5.3 Hive Data Models 

Similar to traditional databases, Hive stores data in tables, where each table consists 

of a number of rows, and each row consists of a specified number of columns. We 

describe Hive data model components below – 

Tables 

These are analogous to Tables in Relational Databases. Tables can be filtered, 

projected, joined and unioned. Additionally all the data of a table is stored in a 

directory in hdfs. Hive also supports notion of external tables wherein a table 

can be created on preexisting files or directories in hdfs by providing the 

appropriate location to the table creation DDL. The rows in a table are 

organized into typed columns similar to Relational Databases. [40] 

Partitions 

Each Table can have one or more partition keys which determine how the data 

is stored e.g. a table T with a date partition column ds had files with data for a 

particular date stored in the <table location>/ds=<date> directory in hdfs.  
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Partitions allow the system to prune data to be inspected based on query 

predicates, e.g. a query that in interested in rows from T that satisfy the 

predicate T.ds = '2008-09-01' would only have to look at files in <table 

location>/ds=2008-09-01/ directory in hdfs. 

Buckets  

Data in each partition may in turn be divided into Buckets based on the hash 

of a column in the table. Each bucket is stored as a file in the partition 

directory. Bucketing allows the system to efficiently evaluate queries that 

depend on a sample of data (these are queries that use SAMPLE clause on the 

table). 

 

5.4 HiveQL in Hadoop 

Data files in Hive are seen in the form of tables (and views) with columns to 

represent fields and rows to represent records. Tables can be vertically partitioned 

based on one or more table columns. The data for each partition is stored in a 

separate HDFS file. Data is not validated against the partition definition during the 

loading of data into the HDFS file. Partitions can be further split into buckets by 

hashing the data values of one or more partition columns. Buckets are stored in 

separate HDFS files and are used for sampling and for building a Hive index on an 

HDFS file. Hive tables do not support the concepts of primary or foreign keys or 

constraints of any type. All definitions are maintained in the Hive metastore, which is 

a relational database such as MySQL. 

 Data types supported by Hive include primitive types such as integers, floating 

point numbers, strings and Boolean. A timestamp data type is provided in Hive  
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0.8.0. Hive also supports complex types such as arrays (indexed lists), maps (key 

value pairs), structs (structures) and user-defined types.  

External HDFS files can be defined to Hive as external tables. Hive also allows 

access to data stored in other file and database systems such as HBase. Access to 

these data stores is enabled via storage handlers that present the data to Hive as 

non-native tables. The HiveQL support (and restrictions) for these non-native tables 

is broadly the same as that for native tables. 

HiveQL supports a subset of the SQL SELECT statement operators and syntax, 

including: 

• Join (equality, outer, and left semi-joins are supported)  

• Union  

• Subqueries (supported in the FROM clause only)  

• Relational, arithmetic, logical and complex type operators  

• Arithmetic, string, date, XPath, and user-defined functions including 

aggregate and table functions (UDFs, UDAFs, UDTFs)  

 

The Hive MAP and REDUCE operators can be used to embed custom MapReduce 

scripts in HiveQL queries. An INSERT statement is provided, but it can only be 

used to load or replace a complete table or table partition. The equivalents of the 

SQL UPDATE and DELETE statements  are not supported. 

 

 When comparing Hadoop Hive to a relational DBMS employing SQL, two areas 

have to be considered: query language syntax and query performance. Query 

language syntax is a moving target in both Hadoop Hive and relational DBMS 

products. Although Hive provides a useful subset (and superset) of SQL  
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functionality, it is highly probable that existing SQL-based user applications and 

vendor software would need to be modified and simplified to work with Hive. 

Perhaps the most important comparison between Hadoop Hive and the relational 

DBMS environment concerns performance. Such comparisons should consider 

traditional short and/or ad-hoc SQL-like queries running on Hive versus a 

relational DBMS, and also MapReduce performance on Hive compared with using 

SQL MapReduce relational DBMS functions for querying and analyzing large 

volumes of multi-structured data. Knowledge of the way Hive and relational 

DBMSs process queries is useful when discussing the performance of the two 

approaches.  

Hive provides an SQL wrapper on top of Hadoop HDFS (and other storage systems). 

It has no control or knowledge of the placement or location of data in HDFS files. 

The Hive optimizer uses rules to convert HiveQL queries into a series of MapReduce 

jobs for execution on a Hadoop cluster. Hints in HiveQL queries can aid the 

optimization process, for example, to improve the performance of join processing.  

Hive-generated MapReduce jobs sequentially scan the HDFS files used to store the 

data associated with a Hive table. The Hive optimizer is partition and bucket 

aware, and so table partitions and buckets can be used to reduce the amount of data 

scanned by a query. Hive supports compact indexes (in 0.7.0) and bitmapped 

indexes (in 0.8.0), which aid lookup and range queries, and also enable certain 

queries to be satisfied by index-only access. Since Hive has no knowledge of the 

actual physical location of the data in an HDFS file, the Hive indexes contain data 

rather than pointers to data. A table index will need to be rebuilt if the data in a 

table partition is refreshed. Hive does, however, support partitioned indexes. Hive  

indexes aid the performance of traditional SQL-like queries, rather than 

MapReduce queries, which by their nature involve sequential processing. 
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The primary use case for Hadoop Hive is the same as that for Hadoop MapReduce, 

which is the sequential processing of very large multi-structured data files such as  

Web logs. It is not well suited to ad- hoc queries where the user expects fast 

response times. The positioning of Hive is aptly described on the Apache Hive Wiki. 

“Hive is not designed for OLTP workloads and does not offer real-time queries or 

row-level updates. It is best used for batch jobs over large sets of append-only data 

(like Web logs). What Hive values most is scalability (scale out with more machines 

added dynamically to the Hadoop cluster), extensibility (with MapReduce 

framework and UDF/UDAF/UDTF), fault-tolerance, and loose-coupling with its 

input formats. 

The main benefit of Hive is that it dramatically improves the simplicity of 

MapReduce development. The Hive optimizer also makes it easier to process 

interrelated files as compared with hand-coding MapReduce procedural logic to do 

this. The Hive optimizer, however, is still immature and is not fully insulated from 

the underlying file system, which means that for more complex queries, the Hive user 

is still frequently required to aid the optimizer through hints and certain HiveQL 

language constructions. 

There are many other tools for improving the usability of Hadoop, e.g., Informatica 

HParser for data transformation, and Karmasphere Studio, Pentaho Business 

Analytics and Revolution RevoConnectR for analytical processing. Most of these tools 

are front ends to Hadoop MapReduce and HDFS, and so many of the considerations 

discussed above for Hive apply equally to these products. 

This paper includes an experiment on ‘Testing HiveQL on Hadoop framework’. 

Appendix C describes the steps of ‘Configuration of Hive’ and Appendix D presents 

the procedure of ‘Testing HiveQL’. 
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Chapter 6 

 

Discussion 

 

Today, we're surrounded by data. People upload videos, take pictures on their cell 

phones, text friends, update their Facebook status, leave comments around the web, 

click on ads, and so forth. Machines, too, are generating and keeping more and more 

data. The exponential growth of data first presented challenges to cutting-edge 

businesses such as Google, Yahoo, Amazon, and Microsoft. They needed to go 

through exabytes and zettabytes of data to figure out which websites were popular, 

what books were in demand, and what kinds of ads appealed to people. Existing 

tools were becoming inadequate to process such large data sets. So, new 

technologies have emerged.  

 

The idea behind this thesis is aimed at making investigation on newer approaches 

of cloud data storages. We have conducted the comparison study on ‘SQL vs. 

NOSQL’ issue that is considered as an important debate in cloud world. Then, we 

made research on different branches of newly evolving NOSQL database. NOSQL 

database contains a magnificent field in cloud computing. So, we picked 3 popular 
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NOSQL databases – MongoDB, Cassandra and HBase to explore. Later, a case 

study has been conducted to identify the distinct usage properties of each database.  

 

In the next part of investigation, we also conducted an experiment on best knowing 

framework – Hadoop and data warehouse system – Hive. This combination of 

Hadoop - Hive was known to serve data storage of big website like Facebook.  

 

 

There is no doubt that the work done here is the root of further research on NOSQL 

database and ‘Big Data Analytics’. In future, we aim to make research on more 

NOSQL databases and perform a real-time benchmark test of NOSQL databases 

using YCSB in Cloud environment. 

 

Also, in our thesis, we implemented Hadoop and Hive and evaluated MapReduce 

function and HiveQL. These works have been done on single-node-cluster. Our future 

plan from this part is to test HiveQL and MapReduce on multi-node-cluster.  
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Appendix A 

 

Configuring Virtual Machines           

with Hadoop  

 
In this appendix, the required steps for setting up a Hadoop single node cluster using 

the Hadoop Distributed File System (HDFS) on Ubuntu Linux will be described. 

 

A.1 Running Hadoop on Single Node Cluster 

 

This experiment has been tested with the following software version: 

• Ubuntu Linux 11.04 

• Hadoop 0.20.2 

• Hive 0.8.1 

 

Prerequisites 

� At first we set up the Virtual Machine [Oracle VM Virtual Box] 

� Then we install the Ubuntu version 11.04 

� After that configure the NAT(it is important for getting net connection) 
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NAT Configuration 

 

 

 

A.1.1. Changing root password 

 

 

 

 

 

 

 

 

 

 

A.1.2. Adding Hadoop User 

 

 

 

 

 

 

 

A.1.3. Providing Sudo Privilege to Hadoop User 

 

 

 

Machine-->Setting-->Network-->NAT-->OK (Done) 

sumaiya@VMHadoop:~$ sudopasswd 
[sudo] password for sumaiya:  
Enter new UNIX password:  
Retypenew UNIX password:  
passwd: password updated successfully 
 

 

#useraddhadoop 
#mkdir /home/hadoop 
#chown -R hadoop:hadoop /home/hadoop 
#usermod -d /home/hadoophadoop 
 
#passwdhadoop 
newpassword:hadoop 
 

#usermod -a -G sudohadoop 
#login as root 
#chmodu+w /etc/sudoers 
#vi /etc/sudoers 
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//Inserting the below line into the File 

 

 

 

A.1.4. Checking Hadoop’s Sudo Privilege 

 

 

 

 

 

 

A.1.5. Changing shell for Hadoop User 

 

 

 

 

 

A.1.6 Installing ODBC Components 

 

 

 

 

 

 

 

 

 

  

hadoop ALL=(ALL:ALL)ALL 
 

#chmod u-w /etc/sudoers 
#su - hadoop 
//checking whether hadoop user is getting sudo privilege or not 
$cat /etc/sudoers //this will show permission denied 
$sud cat /etc/sudoers //this will work as hadoop user got sudo privilege 
 

$sudo vi/etc/passwd 
 
(change shell of hadoop from /bin/sh to /bin/bash) 
 

$sudo add-apt-repository "deb http://archive.canonical.com/ 
lucid partner" 
 
$ sudo apt-get -f install unixodbc 
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$ sudo apt-get -f install odbcinst1debian2 
 
 

 

$ sudo apt-get -f install odbcinst 
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A.1.7. Installing Java 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Quick Check for SUN JDK’s Correct Set Up: 

 

 

 

 

 

 

 

 

 

 

#mkdir /mnt/share                       //Creating a share mount point for host OS 
#chown -R hadoop:hadoop /mnt/share 
$sudo mount -t vboxsfhadoop_software /mnt/share 
$ sudomkdir /usr/lib/jvm/                                           //Creating JAVA Home Directory 
$cd /mnt/share 
$sudocp jdk-7u6-linux-i586.tar.gz /usr/lib/jvm       //copying java software to guest OS 
from host OS 
 
$ sudo tar zxvf jdk-7u6-linux-i586.tar.gz                 //unzip the java software 
$ sudo mv jdk-7u6-linux-i586 /usr/lib/jvm/ 
 
$ sudo update-alternatives --install /usr/bin/java java  
/usr/lib/jvm/jdk1.7.0_06/bin/java 1 
$ sudo update-alternatives --install /usr/bin/javacjavac  
/usr/lib/jvm/jdk1.7.0_06/bin/javac 1 
 
$ sudo update-alternatives --configjavac 
$ sudo update-alternatives --config java 
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A.1.8. Configuring SSH 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

$ sudo add-apt-repository "deb http://archive.canonical.com/ lucid partner" 
 
$ sudo apt-get upgrade openssh-client  openssh-server 
 
//Generate an SSH key for the hadoop: 
 
$ su - hadoop 
$ ssh-keygen -t rsa -P "" 
 

 
 

$ cat $HOME/.ssh/id_rsa.pub >> $HOME/.ssh/authorized_keys 
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$ sudo apt-get install openssh-server openssh-client 
 

 

//now below will not prompt for password 
$ sshlocalhost 
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A.1.9. Disabling IPV6 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

//Open /etc/sysctl.conf and add the following lines to the end of the file: 
 
$sudovi /etc/sysctl.conf 
 
#disable ipv6 
net.ipv6.conf.all.disable_ipv6 = 1 
net.ipv6.conf.default.disable_ipv6 = 1 
net.ipv6.conf.lo.disable_ipv6 = 1    
 
//Reboot the machine in order to make the changes take effect. 
 
//You can check whether IPv6 is enabled on your machine with the following 
command: 
 
$ cat /proc/sys/net/ipv6/conf/all/disable_ipv6 
1 
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A.1.10. Installing and Configuring Hadoop: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

$sudo mount -t vboxsfhadoop_software /mnt/share 
//extract and change ownership to hadoop user 
$cd /mnt/share 
$sudocphadoop-0.20.2.tar.gz/usr/local 
$cd /usr/local 
$sudochownhadoop:hadoophadoop-0.20.2.tar.gz 
$sudo tar xzf hadoop-0.20.2.tar.gz 
$sudo mv hadoop-0.20.2 hadoop 
$sudochown -R hadoop:hadoophadoop 
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A.1.11. Setting Profile for Hadoop User  

//Add the following lines to the end of the $HOME/.bashrc file of user hadoopuser: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

##########hadoop related config############# 
# Set Hadoop-related environment variables 
export HADOOP_HOME=/usr/local/hadoop 
export HIVE_HOME=/usr/local/hive 
 
# Set JAVA_HOME (we will also configure JAVA_HOME directly for 
Hadoop later on) 
#export JAVA_HOME=/usr/lib/jvm/jdk1.7.0_05/ 
export JAVA_HOME=/usr/lib/jvm/jdk1.7.0_06/ 
 
# Some convenient aliases and functions for running Hadoop-related 
commands 
unaliasfs&> /dev/null 
aliasfs="hadoopfs" 
unaliashls&> /dev/null 
aliashls="fs -ls" 
 
# If you have LZO compression enabled in your Hadoop cluster and 
# compress job outputs with LZOP (not covered in this tutorial): 
# Conveniently inspect an LZOP compressed file from the command 
# line; run via: 
# 
# $ lzohead /hdfs/path/to/lzop/compressed/file.lzo 
# 
# Requires installed 'lzop' command. 
# 
lzohead () { 
hadoopfs -cat $1 | lzop -dc | head -1000 | less 
} 
 
# AddHadoop bin/ directory to PATH 
export PATH=$PATH:$HADOOP_HOME/bin 
############################################ 
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A.1.12. Editing Hadoop’s hadoop-eng.sh file 

 

 

 

 

 

 

 

 

 

 

 

 

A.1.13. Editing necessary XML files 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

$sudovi /usr/local/hadoop/conf/hadoop-env.sh  
 
//Change: 

# The java implementation to use.  Required. 
# export JAVA_HOME=/usr/lib/j2sdk1.5-sun 
 
//To: 

# The java implementation to use.  Required. 
export JAVA_HOME=/usr/lib/jvm/jdk1.7.0_06/ 
 

 
 

//Add the following snippets between the <configuration> ... 
</configuration> tags in the respective configuration XML file. 
 
$sudovi /usr/local/hadoop/conf/core-site.xml 
 
<!-- In: conf/core-site.xml --> 
<property> 
<name>hadoop.tmp.dir</name> 
<value>/app/hadoop/tmp</value> 
<description>A base for other temporary directories.</description> 
</property> 
 
<property> 
<name>fs.default.name</name> 
<value>hdfs://localhost:54310</value> 
<description>The name of the default file system.  A URI whose 
scheme and authority determine the FileSystem implementation.  The 
uri's scheme determines the config property (fs.SCHEME.impl) naming 
theFileSystem implementation class.  The uri's authority is used to 
determine the host, port, etc. for a filesystem.</description> 
</property> 
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A.1.13. Creating Directory 

 

 

 

 

 

 

//Add the following snippets between the <configuration> ... 
</configuration> tags in the respective configuration XML file. 
 
$sudovi /usr/local/hadoop/conf/mapred-site.xml 
 
<!-- In: conf/mapred-site.xml --> 
<property> 
<name>mapred.job.tracker</name> 
<value>localhost:54311</value> 
<description>The host and port that the MapReduce job tracker runs 
at.  If "local", then jobs are run in-process as a single map 
and reduce task. 
</description> 
</property> 
 

//Add the following snippets between the <configuration> ... 
</configuration> tags in the respective configuration XML file. 
 
$sudovi /usr/local/hadoop/conf/hdfs-site.xml 
 
<!-- In: conf/hdfs-site.xml --> 
<property> 
<name>dfs.replication</name> 
<value>1</value> 
<description>Default block replication. 
  The actual number of replications can be specified when the file is created. 
  The default is used if replication is not specified in create time. 
</description> 
</property> 
 

//Now we create the directory and set the required 
ownerships and permissions: 
 
$ sudomkdir -p /app/hadoop/tmp 
$ sudochownhadoop:hadoop /app/hadoop/tmp 
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A.1.14. Formatting Name Node 

 

//Formatting the name node. 

//Do not format a running Hadoopfilesystem as you will lose all the data currently 

in the cluster (in //HDFS).To format the filesystem (which simply initializes the 

directory specified by the dfs.name.dir//variable), run the command. 

 

 

 

 

 

 

 

 

 

 

 

 

 

A.1.15  Starting  Single-node Cluster 

 

 

 

 

 

 

 

 

$/usr/local/hadoop/bin/hadoopnamenode –format 
 

 
 

 

$ /usr/local/hadoop/bin ./start-all.sh 
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A.1.16 A notify tool for checking whether the expected Hadoop 

processes are running is JPS 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

$ cd /usr/lib/jvm/jdk1.7.0_06/bin 
 
hadoop@VMHadoop:/usr/lib/jvm/jdk1.7.0_06/bin$ ./jps 
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Appendix B 

 

Testing MapReduce Program 
 
 

In this Appendix we will run a “wordcount” problem to test the MapReduce function 

of Hadoop. This function will return number of occurrences of each word from a given 

text input file.  

 

B.1. Running a MapReduce job 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

$ sudo mkdir /tmp/newout 
$ cd /tmp 
$ vi/tmp/newout/input.txt 
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B.1.2. Retrieve the job result from HDFS 
 
 

 

 

 

 

 

 

 

$ /usr/local/hadoop/bin/hadoopdfs -copyFromLocal /tmp/newout/ 
/user/hduser/hadoopout 
 
$ bin/hadoop jar hadoop *examples*jar 
wordcount/user/hduser/hadoop/input.txt/user/hduser/hadoop-count-out/ 
 

 

$ cd /usr/local/hadoop 
$ mkdir /tmp/hdout 
$ bin/hadoopdfs -getmerge /user/hduser/hadoop-count-out /tmp/hdout 
$ head /tmp/hdout/hadoop-count-out 
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Appendix C 

 

Configuration of Hive  

 
In this appendix, we will configure the Data WareHouse “Hive” on top of Hadoop. 

 

Prerequisite 

• Installation of Hadoop[ We have used version 0.20.2] 

• Need to download Hive [hive-0.8.1.tar.gz] from 

http://mirrors.ispros.com.bd/apache/hive/stable/ 

 

C.1. Installation of Hive 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

. $sudo cp hive-0.8.1.tar.gz /usr/local/ 
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 $sudotar -xzvfhive-0.8.1.tar.gz 
 
 

 

# mv /usr/local/hive-0.8.1.tar.gz  /usr/local/hive 
 
# chown -R hadoop:hadoop /usr/local/hive 
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C.2. Adding the below environment variables in ~/.bashrc file 
 

 

 

 

 

 
C.3. Configure hadoop HDFS before a table can be created in Hive 

 

 

 

 
 
 
 
C.4. To use hive command line interface (CLI) from the shell: 

 

 

 

 

 

 

 

 

 

 

$ export HIVE_HOME=/usr/local/hive 
 
 $ export PATH=$HIVE_HOME/bin:$PATH 
 

 $HADOOP_HOME/bin/hadoopfs -mkdir       /hivetest 
 

 
 

$HADOOP_HOME/bin/hadoopfs -chmodg+w   /hivetest 
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Appendix D 

 

Testing HiveQL 

 
 
In this appendix, we will test the data warehouse system Hive by running HiveQl on 

it. Here it will take input from a txt file “foo.txt” then it will load the data in table 

“foo”. There we can run our SQL like language which is HiveQL. 

 

D.1. Sample text input file 
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D.2. Create table “hive_test”: 

 

 

 

 

 

 

 

 

 

 

D.3. Loading output generated by MapReduce to HIVE’s “hive_test” Table: 

 
 

 

 

 

 

 

 

 

 

 

 

 

 
D.4.1.  HiveQL sample query example:  

 

// Show Table:  

 

 
 

 

 

 

 

 

create table hive_test (word STRING,count INT) ROW FORMAT 
delimited fields terminated by '\t' lines terminated by '\n'; 
 

 

 

hive> LOAD DATA LOCAL INPATH '/tmp/hdout/hadoop-out' OVERWRITE 
INTO TABLE  hive_test; 
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// select * from hive_test; 

 

 

 

 

 
 

 

 

 

 

 

 

 

// Data Filtering: select * from hive_test where count=3; 
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