
www.manaraa.com

 BRAC

 UNIVERSITY

 SCHOOL OF ENGINEERING

DEPARTMENT OF COMPUTER SCIENCE AND ENGEENIRING

12-12-2012

“Investigating Cloud Data Storage”

Sumaiya Binte Mostafa (ID – 08301001)

Firoza Tabassum (ID – 09101028)

BRAC University

SUPERVISOR: Dr. Mumit Khan

www.manaraa.com

INVESTIGATING CLOUD DATA STORAGE

By

SUMAIYA BINTE MOSTAFA

FIROZA TABASSUM

 A report

submitted in the partial fulfillment

of the requirements for the degree of

Bachelor of Science in Computer Science & Engineering of

 BRAC University

December 2012

www.manaraa.com

© 2012
 Sumaiya Binte Mostafa

Firoza Tabassum

All Rights Reserved

www.manaraa.com

BRAC UNIVERSITY

FINAL READING APPROVAL

Thesis Title: Investigating Cloud Data Storage

Date of Final Presentation: 12 December, 2012

The final reading approval of the thesis is granted by Dr. Mumit Khan, Supervisor.

Supervisor

Dr Mumit Khan

Professor and Chairperson,

Department of Computer Science and Engineering,

BRAC University

www.manaraa.com

ACKNOWLEDGEMENT

We would like to thank our supervisor Dr. Mumit Khan for his guidance and

support he gave during this exercise. His inspiration and encouragement made it

easier for us to finish the thesis work properly in proper time.

www.manaraa.com

ABSTRACT

A cloud database is a database that typically runs on a cloud computing platform. Of

the databases available on the cloud, traditional data model is SQL-based. The recent

trend is to move on to NOSQL data model. Now, the question is which database

approach is better to choose in this era of ‘Big Data’? SQL databases are difficult to

scale, meaning they are not natively suited to a cloud environment, although cloud

database services based on SQL are attempting to address this challenge. On the

other hand, NOSQL databases are built to service heavy read/write loads and are

able scale up and down easily, and therefore they are more natively suited to running

on the cloud. Our aim for thesis is to investigate suitable data storage for cloud.

Considering the ‘Big Data’ scenario of today’s world, we set forth to choose the

NOSQL database model as the preferred solution for cloud computing. This paper

aims to show two investigations on different branches of cloud data storage. The first

analysis is based on the case study of performance benchmarking on 3 popular

NOSQL databases - MongoDB, Cassandra, and HBase. The next part of investigation

includes an experiment on the most popular ‘Big Data’ management framework –

namely, Hadoop. Hadoop uses MapReduce for parallel computation, but writing

MapReduce function is hard for programmers. So, our experiment is to configure

HIVE data warehousing system on the top of Hadoop as a wrapper, so that end users

gets benefit of using a SQL-like language, which is known as ‘HiveQL’ and provided

by HIVE even if with the environment of complex MapReduce function.

www.manaraa.com

i

Contents

1 Introduction

1.1 Background . 1

1.2 Motivation . 3

 1.3 Thesis Outline . 4

2 Cloud Data Storage Models

2.1 Available Cloud Data Storage Models .

2.2 Properties of SQL Database . 6

 2.2.1 Fixed Schema . 6

 2.2.2 Relational Algebra . 6

2.2.3 Query Language – SQL . 6

 2.3 Properties of NOSQL Database . 7

 2.3.1 Flexible Schema . 7

2.3.2 Non-Relational Database . 7

 2.3.3 Simple Key-Value Stores .

2.4 A Comparison Study – SQL vs. NOSQL . 9

2.4.1 1st Issue – Schema . 9

2.4.2 2nd Issue – ACID vs. BASE Property . 10

2.4.3 3rd Issue – CAP Theorem . 13

2.4.4 4th Issue – Scalability . 16

2.5 Chosen Database Approach – NOSQL . 20

1

5

8

5

www.manaraa.com

ii

3 The NOSQL Movement

3.1 Classification of NOSQL Database Models 21

 3.2.1 Key-Value Stores . 22

 3.2.2 Document Databases . 23

3.2.3 Column Family Stores . 24

 3.2.4 Graph Databases . 25

3.2 A Case of Study:

Evaluating NOSQL Performance using YCSB Benchmark Results . . 26

3.2.1 Test Framework – YCSB .

3.2.2 YCSB Benchmark Results .

3.2.3 Summary of Benchmark Test Result . 31

3.3 Benchmark Result Analysis . 32

3.3.1 Result Case – 1:

 ‘Read Only’ and ‘Read & Update’ Operation are much slower

 than ‘Insert Only’ Operation . 32

3.3.2 Result Case – 2:

 Cassandra Performance – Faster in Writing than Reading . . 36

3.3.3 Result Case – 3:

 HBase Performance – Faster in Reading than Writing

 Compared to Cassandra . 40

3.3.4 Result Case – 4:

 MongoDB Performance – Lowest Throughput among the

 3 Databases . 42

27

29

21

www.manaraa.com

iii

4 Big Data Analytics:

Hadoop & MapReduce – A New Challenge

4.1 MapReduce . 43

4.1.1 Fundamental pieces of MapReduce Query 44

4.1.2 MapReduce Usage . 46

 4.1.3 Application Development . 46

 4.2 Hadoop.

4.2.1 What is Hadoop Good for

 4.2.2 Hadoop Distributed File System . 50

 4.2.3 MapReduce in Hadoop . 52

5 Hive – Data Warehousing Using Hadoop 55

5.1 Hive . 56

5.2 Hive Architecture . 56

5.3 Hive Data Models .

5.4 HiveQL in Hadoop .

6 Discussion

49

47

58

59

63

43

www.manaraa.com

iv

Appendix – A

Configuring Virtual Machine with Hadoop .

Appendix – B

Testing MapReduce Program .

Appendix – C

Configuring Hive .

Appendix – D

Testing HiveQL .

List of Figures .

List of Tables .

Bibliography .

81

79

65

85

87

89

91

www.manaraa.com

1

Chapter 1

Introduction

The revolutionary prospect of cloud computing is changing the way of people’s

thought in IT. Day by day, the amount of data stored at companies like Google,

Yahoo, Facebook, Amazon or Twitter has become incredibly huge. The new

challenging requirement of this ‘Big Data’ era make us realize to rethink what we

require of a database, and to come up with answers aside from the relational

databases that have served us well for a quarter of century. Thus, web applications

and databases in cloud are undergoing major architectural changes to take advantage

of the scalability provided by the cloud.

1.1 Background

Only in the last century, data size would have been measured as ‘Gigabytes to

Terabytes’. This ‘traditional data’ had been well-managed by popular SQL database

(RDBMS – Relational Database Management System). But the scenario has changed

dramatically with the advent of ‘Cloud Computing’. The advent of ‘Cloud Computing’

technology has caused a fundamental change to the nature of data. Now, in the 20th

century, data size is measured as ‘Petabytes to Exabytes’ and even with ‘Zettabytes’.

One Zettabyte is counted as 1021 bytes [1]. So, it is a huge amount of data.

www.manaraa.com

We present a statistic of recent data explosion to have an idea of ‘Big Data’ scenario

in today’s world. [2] [3]

Also, to remember, data size is not the only issue to focus on. Instead of structured

data, the variety of data types is increasing, namely unstructured text

and semi-structured data like social media data, location

data. So, big web enterprises also need a ‘Distributed d

‘Centralized database’.

161
253

0

500

1000

1500

2000

2500

3000

2006 2007

ExaBytes

Figure 1.1

tatistic of recent data explosion to have an idea of ‘Big Data’ scenario

Also, to remember, data size is not the only issue to focus on. Instead of structured

variety of data types is increasing, namely unstructured text

structured data like social media data, location-based data, and log

rises also need a ‘Distributed database’ instead of the

397

623

988

1800

2.7 Zettabytes!!

2008 2009 2010 2011

Figure 1.1 Recent Data Explosion

2

tatistic of recent data explosion to have an idea of ‘Big Data’ scenario

Also, to remember, data size is not the only issue to focus on. Instead of structured

variety of data types is increasing, namely unstructured text-based data

based data, and log-file

atabase’ instead of the

2.7 Zettabytes!!

2012

www.manaraa.com

3

1.2 Motivation

The background situation forces big web enterprises to think for a new database

solution as traditional SQL database is not natively suited for cloud environment. A

popular trend that is named as ‘NOSQL’ is emerging to solve the limits of SQL

database. NOSQL breaks the one-eyed rule of relational database.

Also, we find new frameworks and analytic approaches are evolving rapidly. The

most popular framework now-a-days is ‘Hadoop’. Another special framework is ‘Hive’,

which works as a wrapper on top of ‘Hadoop’.

The evolving technologies motivates us to make research on back-end section of cloud

computing.

In this paper, we aim to explore different branches of NOSQL database and make an

experiment on ‘Hadoop’ and ‘Hive’ framework.

www.manaraa.com

4

1.3 Thesis Outline

Chapter 2

This chapter analyzes different characteristics of two main types of cloud databases

and conducts a comparison study to choose the better database tool.

Chapter 3

This chapter analyzes different categories of chosen database approach ‘NOSQL’ and

presents a case study on performance benchmarking of 3 popular NOSQL databases,

namely, MongoDB, Cassandra and HBase.

Chapter 4

This chapter investigates on the best knowing Data Management Framework,

namely, Hadoop and its Programming Model – MapReduce.

Chapter 5

This chapter investigates on a Data Warehouse System – Hive, which is known to be

used in Facebook which also solves the complex query procedure of Hadoop by using

a SQL-like language that is named as HiveQL.

Chapter 6

This chapter summarizes our thesis work and gives an idea about our future plan.

Appendix

Appendix points out the implementation and configuration work on Hadoop and

Hive.

www.manaraa.com

5

Chapter 2

Cloud Data Storage Models

In this chapter, we will identify the available cloud data storage models and analyze

their characteristics to pick the appropriate database approach for ‘Big Data’

evolution.

2.1 Available Cloud Data Storage Models

We set forth the approaches for cloud database to be counted as two main types –

1. SQL database model or RDBMS (Relational Database Management System)

2. NOSQL database model.

The traditional database model is SQL-based. It is known as RDBMS which has been

around for more than 40 years and invented in 1970 by IBMer Edgar Codd. The main

property of SQL database is that it uses relational algebra.

The second option for database choice is NOSQL. The acronym ‘NoSQL’ was first

coined in 1998 by Carlo Strozzi [4]. NOSQL does not mean “No SQL”; it rather means

“Not Only SQL”. And the SQL word represents the relational databases, not the SQL

language [5]. The idea for emerging this database is that both technologies can

coexist and each has its place.

In the next section, we present characteristics of both databases.

www.manaraa.com

6

2.2 Properties of SQL Database

SQL database has 3 major characteristics –

1. Fixed Schema

2. Relational Algebra

3. Query Language – SQL

In the following discussion, we briefly explain each of these properties.

2.2.1 Fixed Schema

SQL database follows a fixed schema condition. The term ‘Fixed Schema’ means -

every requirements of database model have to be predefined [6].

2.2.2 Relational Algebra

As we have stated before, this the most import property of SQL database. The

Relational Database Model states that - All information must be held in the form of a

table. A table describes a specific entity type, and all attributes of a specific record are

listed under an entity type. Each individual record is represented as a row, and an

attribute as a column. Relations are represented as tables in the database through

JOIN operation.

2.2.3 Query Language – SQL

The SQL database uses SQL as query language. SQL states for – Structured Query

Language.

Example of SQL databases are: MySQL, Oracle, Microsoft SQL Server, PostgreSQL,

IBM etc.

www.manaraa.com

7

2.3 Properties of NOSQL Database

NOSQL database is quite different from SQL database in some significant ways. We

find 4 major characteristics of NOSQL database –

1. Flexible Schema

2. Non-Relational Database

3. Simple Key-Value Stores

In the following discussion, we briefly explain each of these properties.

2.3.1 Flexible Schema

Flexible schema means - the schema can be changed according to the need for design

and is defined by the program or data itself. So, conditions need not to predefine.

NoSQL database systems are developed to manage large volumes of data. It follows

the ‘Flexible Schema’ property.

2.3.2 Non-Relational Database

NOSQL is known as ‘Non-Relational’ database. Here, the term -‘Non-Relational’

does not mean “has no relations” or “cannot be described in terms of relational

algebra.” It means - “is not based on Edger Codd’s relational database model”. [7]

What a non-relational database does not do is - organize its data in related tables

[8]. It does not have any ‘JOIN’ operations or constraints (i.e. NOT NULL) and does

not require having ‘Normalizing’ format.

We present an example of ‘Non-Relational Database’ to the contrary of ‘Relational

Database’ –

In a SQL database, a blog might have one table that stores posts and another table

www.manaraa.com

8

that stores comments. A JOIN is then required to pull out all the comments along

with a particular post. Each time, the relational database needs to define the

relation through JOIN and other constraints.

On the other hand, NOSQL database does not require defining relations through

constraints. With a non-relational database, one “collection” (the non-relational

version of a table) would store all of the posts. Each comment associated with a post

would be stored as part of that post’s record within the collection. This means that

one record (or “document”, in non-relational terms) might contain just the post and

no comments, another record might contain a much longer post and hundreds of

comments. The benefit is that when we go to retrieve an individual post, we are

automatically retrieving all the associated information (e.g., the comments for that

post).

2.3.3 Simple Key-Value Stores

NOSQL database is simple Key-Value Stores. It makes the data retrieving more

efficient. The Key-Value Store idea is more like ‘Array Indexing’. For example, in a

web service, a name is just a key and the whole data can be retrieved according to the

name.

Example of NOSQL databases are: MongoDB, Cassandra, HBase etc.

So, here we summarized the properties of SQL and NOSQL database.

Now, in our next section, we conduct a comparison study on both database models to

find the better suited database approach for cloud computing.

www.manaraa.com

9

2.4 A Comparison Study – SQL vs. NOSQL

This section analyzes the issues on ‘SQL vs. NOSQL Debate’. We consider 4 issues –

1. Schema

2. ACID vs. BASE Property

3. CAP Theorem

4. Scalability

In the following sub-sections, we made comparison on each issue.

2.4.1 1st Issue – Schema

SQL database follows ‘Fixed Schema’. On the other hand, NOSQL database follows

‘Flexible Schema’.

We find NOSQL database as the preferred solution for cloud computing. Our reasons

for supporting NOSQL database are given below –

1. Huge Data Size

This is the era of ‘Big Data’ where size of data is changing rapidly. We can we

can think of Twitter as example. When it started out, it just collected bare-

bones information with each tweet: the tweet itself, the Twitter handle, a

timestamp, and a few other bits. Over its five-year history, though, lots of

metadata has been added. A tweet may be 140 characters at most, but a

couple KB is actually sent to the server, and all of this is saved in the

database [9]. So, preparing a huge and fixed schema is quite impractical in

such case.

2. Continuously Changing Data Type

Not only the data size, but also the changing nature of data was our

www.manaraa.com

10

 consideration. Modern applications frequently deal with unstructured data:

blog posts, web pages, voice transcripts, and other data objects that are

essentially text. It is impossible to predict how data will be used, or what

additional data these applications will need - as the project unfolds. For

example, many applications are now annotating their data with geographic

information: latitudes and longitudes, addresses. That almost certainly

wasn’t part of the initial data design. So, all these requirements cannot be

predefined and thus, flexible schema is suitable in this case.

NOSQL has flexible schema as schema can be changed according to the need for

design and is defined by the program or data itself. So, NOSQL is the better choice as

database model in this case.

2.4.2 2nd Issue – ACID vs. BASE Property

SQL database has ACID Property. On the other hand, NOSQL database has the

BASE property.

 First, we describe each property here.

ACID Property

ACID stands for Atomicity, Consistency, Isolation and Durability. This

property says that database transactions should be –

� Atomic: Everything in a transaction succeeds or the entire transaction is

rolled back. [10]

� Consistent: A transaction cannot leave the database in an inconsistent

state.

� Isolated: Transactions cannot interfere with each other.

� Durable: Completed transactions persist, even when servers restart etc.

www.manaraa.com

11

BASE Property

BASE stands for Basically Available, Soft State and Eventual Consistency.

• Basic Availability:

This constraint states that the system does guarantee the availability of the

data; there will be a response to any request. But, that response could still

be ‘failure’ to obtain the requested data or the data may be in an

inconsistent or changing state, much like waiting for a check to clear in

anyone’s bank account. [11]

• Soft-state:

The state of the system could change over time, so even during times

without input there may be changes going on due to ‘eventual consistency,’

thus the state of the system is always ‘soft.’

• Eventual consistency:

The system will eventually become consistent once it stops receiving input.

The data will propagate to everywhere it should sooner or later, but the

system will continue to receive input and is not checking the consistency of

every transaction before it moves onto the next one.

The above description summarizes that - ACID compromises with ‘Availability’ for

the sake of ‘Consistency’. To the contrary, BASE compromises with ‘Consistency’ for

the sake of ‘Availability’.

Now, it depends on the type of application that which property we should give

priority. Here, we are considering cloud computing environment where modern

applications mostly need ‘Availability’ even if have to compromise with

‘Consistency’. We state an example for better understanding of the scenario –

Let’s consider, we run an online book store and proudly display how many of

each book we have in your inventory. Every time someone is in the process of

www.manaraa.com

12

buying a book, we lock part of the database until they finish so that all

visitors around the world will see accurate inventory numbers. That works

well if we run a small shop but not to run Amazon.com.

Amazon might instead use cached data. Users would not see not the

inventory count at this second, but what it was say an hour ago when the last

snapshot was taken. Also, Amazon might violate the “I” in ACID by

tolerating a small probability that simultaneous transactions could interfere

with each other. For example, two customers might both believe that they

just purchased the last copy of a certain book. The company might risk

having to apologize to one of the two customers (and maybe compensate them

with a gift card) rather than slowing down their site and irritating myriad

other customers.

So, considering the cloud computing scenario, NOSQL is better over SQL again.

A question can arise here that “Why can’t we have both ‘Consistency’ and

‘Availability’ at the same time?” We explain the answer in the next section through

CAP theorem.

www.manaraa.com

13

2.4.3 3rd Issue – CAP Theorem

CAP theorem was first coined by Eric Brewer in the year 2000 [12]. CAP stands for –

• Consistency:

All nodes see the same data at the same time.

• Availability:

Guarantee that every request receives a response about whether it was

successful or failed.

• Partition Tolerance:

The system continues to operate despite arbitrary message loss or failure of

part of the system. So, operations will complete, even if individual

components are unavailable.

The theorem states that -

“A distributed system cannot ensure all three of the following properties at once.

Web services can pick at most 2 out of these 3 requirements at a time.”

So, there are 3 options to choose for web services –

1. CA – Consistency & Availability

2. CP – Consistency & Partition Tolerance

3. AP –Availability & Partition Tolerance

Here, we analyze each scenario by giving example [13] –

1. Scenario – 1: CA (Sacrificing Partition Tolerance)

On each of the three nodes, we will only store a subset of the user profiles.

This is called sharding. Node one will have users A-H, node two I-S, and node

three T-Z. As long as each node is up and running, we have achieved a three

www.manaraa.com

14

times higher throughput than with a single node as each node only server a

third of the traffic (assuming of course that user profile querying and

updating is uniformly distributed through the alphabet). Consistency is

achieved because immediately after data is written, it is accessible.

Availability is achieved because each server is accessible in real time.

However, we have lost the concept of partition tolerance as the disabling of

one server has rendered a certain section of users unreachable. This carries

the notion that upon hardware failure, data could have permanently been

lost. All in all, not a good sacrifice under cloud environment.

2. Scenario – 2: CP (Sacrificing Availability)

On each of the three nodes, we will store all the user profiles. And

furthermore, to guarantee data consistency and data loss prevention, we will

ensure that every write into the system happens on all three nodes before it

is completed. So, if were to update a profile for Bob McBob, any subsequent

queries or writes on Bob McBob’s profile would be blocked until the update

has completed. Even worse is when one of the nodes is lost but the

requirement of three writes is still required, our entire system is unavailable

until it is restored. This means that while our data is consistent and

protected, we have sacrificed the availability of the data. This can be a

reasonable sacrifice for cloud environment.

3. Scenario – 3: AP (Sacrificing Consistency)

On each of the three nodes, we will store all the user profiles. However (and

different than scenario B), we will acknowledge a completed write

immediately and not wait for the other two nodes. This means that if a read

comes in on node two for data written on node one, it may or may not be up-

to-date depending on the latency of replication. We are still highly available

www.manaraa.com

15

and still partition tolerant (with respect to the latency it takes to replicate to

another second node). This is also a satisfying scenario under cloud

environment.

Now, our aim was to select either SQL database or NOSQL database. We find that

SQL database picks ‘CA’ property following CAP theorem. So, it sacrifices the most

important property for a ‘Distributed Database’ that is – ‘Partition Tolerance’. On

the other hand, NOSQL database sacrifices either ‘Consistency’ or ‘Availability’ and

picks between ‘CP’ and ‘AP’.

Figure 2.1 CAP Theorem

www.manaraa.com

16

Cloud computing technology is built upon the idea of ‘Distributed Database’. So, if

‘Partition tolerance’ is not ensured then cloud technology will not survive. So, ‘CA’ is

not a preferred choice for web services and they are forced to choose between ‘CP’

and ‘AP’.

That makes the conclusion that according to CAP theorem; again, NOSQL database

wins over SQL database.

2.4.4 4th Issue – Scalability

Scalability means the capability to cope and perform under an increased or

expanding workload.

A system that scales well will be able to maintain or even increase its level of

performance or efficiency when tested by larger operational demands [14]. That is

one of the fundamental requirement of cloud computing. So, ‘Scalability’ is considered

as a major issue while choosing cloud database.

We can have 2 types of scalability –

1. Horizontal Scalability or Scale Out

Horizontal Scalability means adding more individual units of resource doing

the same job (add an extra node to the cluster).

2. Vertical Scalability or Scale Up

Vertical Scalability means taking a single unit of resource (i.e. RAM) and

making it larger.

www.manaraa.com

17

‘Horizontal Scalability’ is said to be the better scalability option as we can scale

indefinitely. On the other hand, ‘Vertical Scalability’ always runs into limits as

increasing performance of a single node server has a finite level.

Now, to pick the right database, we analyze the ‘Horizontal Scalability’ performance

between SQL and NOSQL database. We find that the fundamental option to gain

‘horizontal scalability’ in a distributed system is – ‘Sharding’. ‘Database Sharding’

can be simply defined as a ‘shared-nothing’ partitioning scheme. If we think of broken

glass, we can get the concept of sharding - breaking our database down into smaller

chunks called ‘shards’ and spreading those across a number of distributed servers.

Sharding can be achieved in 2 ways –

1. Sharding Manually: SQL database shard manually.

2. Sharding Automatically: NOSQL database shard automatically.

Figure 2.2 Horizontal Scalability vs. Vertical Scalability

www.manaraa.com

Between the 2 types of sharding, it is found obvious that ‘Automatic Sharding’ is

preferred for a distributed system.

1. SQL database cannot shard automatically because of its table

In SQL, multiple tables may be locked for modification

those tables are spread across multiple shards/servers, it'll take more time to

acquire the appropriate locks, update the data and release the locks. So,

scalability is not well achieved in SQL database.

2. To the contrary, a NOSQL datab

does not distribute a logical entity across multiple tables; it’s always stor

one place. They do not enforce referential integrity between these logical

entities. They only enforce consistency inside a single entity and sometimes

not even that.

Here, we present an example to show the scenario how ‘Automatic Sharding’ enables

NOSQL database to scale in a better way.

If we were to write 20 entities to a database cluster with 3

 Figure 2.3 NOSQL Performance Compared to SQL Performance in the context of

‘Relational Property’ of SQL Database

Between the 2 types of sharding, it is found obvious that ‘Automatic Sharding’ is

preferred for a distributed system. But –

SQL database cannot shard automatically because of its table-based nature.

multiple tables may be locked for modification during transaction

those tables are spread across multiple shards/servers, it'll take more time to

priate locks, update the data and release the locks. So,

scalability is not well achieved in SQL database.

To the contrary, a NOSQL database shard automatically as this database

does not distribute a logical entity across multiple tables; it’s always stor

one place. They do not enforce referential integrity between these logical

entities. They only enforce consistency inside a single entity and sometimes

Here, we present an example to show the scenario how ‘Automatic Sharding’ enables

OSQL database to scale in a better way.

f we were to write 20 entities to a database cluster with 3 nodes [15] –

NOSQL Performance Compared to SQL Performance in the context of

‘Relational Property’ of SQL Database

18

Between the 2 types of sharding, it is found obvious that ‘Automatic Sharding’ is

based nature.

during transaction. If

those tables are spread across multiple shards/servers, it'll take more time to

priate locks, update the data and release the locks. So,

ase shard automatically as this database

does not distribute a logical entity across multiple tables; it’s always stored in

one place. They do not enforce referential integrity between these logical

entities. They only enforce consistency inside a single entity and sometimes

Here, we present an example to show the scenario how ‘Automatic Sharding’ enables

NOSQL Performance Compared to SQL Performance in the context of

www.manaraa.com

19

 In NoSQL

� We can write independently on all three nodes because the database does

not need to synchronize between the nodes.

� Client 1 might see changes on Node 1 before Client 2 has written all 20

entities because there’s no need for a two-phase commit.

In SQL

A distributed RDBMS solution on the other hand needs to enforce ACID

consistency across all three nodes:

� RDBMS needs to read data from other nodes in order to ensure referential

integrity because of synchronization.

� Until all three nodes acknowledged a two phase commit, Client 1 will

either not see any or will be blocked until that happened.

All these happens during the transaction and blocks Client 2.

So, it can be concluded that though SQL database can have manual sharding but it

does not give good performance because of its table-based nature. On the other hand,

NOSQL does not follow ‘Relational’ concept, so, it can provide better performance. So,

NOSQL is our preferred choice under the issue of ‘Scalability’.

www.manaraa.com

20

2.5 Chosen Database Approach – NOSQL

For all the above 4 issues of ‘Schema’, ‘ACID vs. BASE Property’, ‘CAP Theorem’ and

‘Scalability’ we find that NOSQL wins in all cases.

Also, we present a table to show the list of popular big web sites that use NOSQL

database as their database approach.

NOSQL Database
Popular Companies that are using NOSQL

Database

Cassandra Digg, Facebook, Twitter, Redit [16] [17]

MongoDB Foursquare, The New York Times [18]

HBase Facebook [19]

DynamoDB Amazon

BigTable Google

CouchDB CERN, BBC, Interactive Mediums

Voldemort LinkedIn

Redis Facebook, Digg, GitHub [20]

Riak Widescript, Western Communication

Most of the big websites have moved to NOSQL database. So, we select NOSQL as

our preferred database approach for cloud computing and aim to make further

investigation on NOSQL.

Table 2.1: List of sites that are using NOSQL database. The above table is the

mirror reflection of importance of NOSQL database in cloud computing.

www.manaraa.com

21

Chapter 3

The NOSQL Movement

The comparison study on ‘SQL vs. NOSQL’ leads us to enter into a new world of

NOSQL database – a world that is built with non-relational concept. In this chapter,

we aim to explore different branches of NOSQL database and show a performance

analysis on 3 popular NOSQL databases in the context of cloud computing needs.

3.1 Classification of NOSQL Database Models

To understand the vast arena of NOSQL database concept, we first go through the

possible categories of this database model.

NOSQL data stores can be classified into four [21] main categories:

1. Key-value Stores

2. Column Family Stores

3. Document Databases

4. Graph Databases

In the following sub-sections, each category is briefly described in the order of

database model concept, example application, available NOSQL databases, strengths

and weaknesses.

www.manaraa.com

22

3.1.1 Key-value Stores

Key-Value stores are considered as the most ubiquitous technology under the NoSQL

banner. The main idea here is using a hash table where there is a unique key and a

pointer to a particular item of data. [22]

Typical Applications Content caching (Focus on scaling to huge amounts of

data, designed to handle massive load), logging, etc.

Database Examples DynamoDB, Redis, Voldemort.

Strengths Fast lookups

Weaknesses Stored data has no schema

(a)

Figure 3.1 Example of Key-value Store model. In (a), data is stored in a table with row-
column property in SQL database. In (b), each value has a unique key to store and
retrieve data in Key-value Store database.

(b)

Table 3.1 Key-value Stores Use Case

www.manaraa.com

23

3.1.2 Document Databases

Document databases are essentially the next level of Key/value. The model is

basically versioned documents that are collections of other key-value collections. The

semi-structured documents are stored in formats like JSON. Document database

allows nested values associated with each key that is not done in ‘Key-value Stores’

case. For that advantage, Document databases support querying more efficiently.

Typical Applications Web applications (Similar to Key-Value stores, but

the DB knows what the Value is)

Database Examples CouchDB, MongoDB

Strengths Tolerant of incomplete data [23]

Weaknesses No standard query syntax

(a)

(b)

Figure 3.2 Example of Document Databases model. In (a), data is stored in a table with row-
column property in SQL database. In (b), each unique key stores the whole document
with nested collections of key-value.

Table 3.2 Document Databases Use Case

www.manaraa.com

24

3.1.3 Column Family Stores

Column Family Stores were created to store and process very large amounts of data

distributed over many machines. Like the concept of ‘Key-value Stores’, there are still

keys but they point to multiple columns. Then, the columns are arranged by column

family.

Typical Applications Distributed file systems

Database Examples Cassandra, HBase, BigTable, HyperTable

Strengths Fast lookups, good distributed storage of data

Weaknesses Very low-level API

(a)

(b)

Figure 3.3 Example of Column Family Stores model. In (a), data is stored in a table with
row-column property in SQL database. In (b), each unique key points to multiple
columns.

Table 3.3 Column Family Stores Use Case

www.manaraa.com

25

3.1.4 Graph Databases

“Relational database is a collection loosely connected tables” whereas “Graph is a

multi-relational graph.” The main drawback of SQL database is that – each time we

have to define relationship between tables by using constraints because of its rigid

structure of tables and row-columns. So, relationships are weak in SQL database.

Graph databases solve the problem as relationships are first class citizen for these

databases. In this category of NOSQL database, a flexible graph model is used which,

again, can scale across multiple machines and can map data using relations.

(a)

(b)

Figure 3.4 Example of Graph Databases model. In (a), a schema for Figure 3.1 (a) is drawn
to show the rigid relationship between tables in SQL database. In (b), a Graph
database model is drawn to show the flexibility of relationships. [24]

www.manaraa.com

26

3.2 A Case of Study: Evaluating NOSQL Performance using

YCSB Benchmark Results

 In the previous section, we presented a brief introduction on NOSQL database.

The immense field of NOSQL technology, coupled with a lack of apples-to-apples

performance comparisons, makes it difficult to understand the tradeoffs between

systems and the workloads for which they are suited. So, in our case study we aim

to measure performance of some selected NoSQL products and to determine the

best use cases of each product for different internet services.

We selected 3 NOSQL databases to conduct study by recollecting popular CAP

theorem image by Eric Brewer.

Typical Applications Social networking, Recommendations (Focus on

modeling the structure of data – interconnectivity)

Database Examples Neo4J, InfoGrid, Infinite Graph

Strengths Graph algorithms e.g. shortest path, connectedness,

n degree relationships, etc.

Weaknesses Has to traverse the entire graph to achieve a

definitive answer. Not easy to cluster.

NOSQL

Database
CAP Property Data Model

1 MongoDB
CP

(Consistency & Partition Tolerance)
Document Databases

2 Cassandra
AP

(Availability & Partition Tolerance)
Column Family Stores

3 HBase CP

(Consistency & Partition Tolerance)
Column Family Stores

Table 3.4 Graph Databases Use Case

Table 3.5 Selected NOSQL Databases for Benchmarking

www.manaraa.com

27

3.2.1 Test Framework: YCSB

To analyze performance of our selected NOSQL databases, we choose to consider the

benchmark test results of “Yahoo! Cloud Serving Benchmark” (YCSB) framework.

The tool was first invented by 'Yahoo! in the year 2010 [25]. This tool allows

benchmarking multiple systems and comparing them by creating “work loads”.

Using this tool, one can install multiple systems on the same hardware configuration,

and run the same workloads against each system. Then it is possible to plot the

performance of each system (for example, as latency versus throughput curves) to see

when one system does better than another. [26]

YCSB currently supports - Cassandra, HBase, MongoDB, Voldemort and JDBC.

In this section, we give an overview on YCSB work procedure.

YCSB Architecture

Figure 3.5 YCSB Architecture

www.manaraa.com

28

The YCSB Client is a Java program for generating the data to be loaded to the

database, and generating the operations which make up the workload.

YCSB has four types of operations–

1. Insert

2. Update

3. Read and

4. Scan.

The architecture of the client is shown in Figure 3.5.

DB Interface Layer

YCSB Client uses the DB interface layer to send commands to the configured

database i.e. Cassandra.

Workload Executor

The Workload defines the data that can be loaded and executed in two

executable phases:

1. The Loading phase, which defines the data to be inserted and

2. The Transactions phase, which defines the operations to be executed

against the data set. [27]

Interaction between Workload Executor and DB Interface Layer

1. Workload executor drives multiple client threads.

2. Each thread executes a sequential series of operations by making calls to

the database interface layer, both to load the database (the load phase)

and to execute the workload (the transaction phase).

3. At the end of the experiment, the statistics module aggregates the

measurements and reports average, 95th and 99th percentile latencies,

and either a histogram or time series of the latencies.

www.manaraa.com

29

3.2.2 YCSB Benchmark Results

The YCSB Benchmark Test Case that we analyzed has some system specifications.

Selected Versions of Databases

1. MongoDB-1.8.1

2. Cassandra-0.7.4

3. HBase-0.90.2

Test Cases

The benchmark is conducted on the basis of three test cases [28] –

1. Insert Only

2. Read Only

3. Read & Update

Test Workload

The test workload is as follows.

Insert Only

Enter 50 million 1K-sized records to the empty DB.

Read Only

Search the key in the Zipfian Distribution1 for a one hour period on the DB

that contains 50 million 1K-sized records.

Read & Update

Conduct ‘Read & Update’ one-on-one instead of ‘Read’ under the identical

conditions of ‘Read Only’.

1 The Zipf distribution, sometimes referred to as the zeta distribution, is a discrete distribution
commonly used in linguistics, insurance, and the modeling of rare events.

www.manaraa.com

Test Results

The benchmark test results are shown in the

10000

15000

20000

25000

10000

15000

20000

25000

10000

15000

20000

25000

Figure 3.6 YCSB Benchmark Test Results.

 In (a), the performance of 3 databases are shown for test case
 In (b), the performances of 3 databases are shown for test case
 In (c), the performances of 3 databases are shown for test case

(a) Insert Only

(b) Read Only

(c) Read & Update

results are shown in the following figure.

5663

21179

10783

0

5000

10000

15000

20000

25000

1260
2310 2853

0

5000

10000

15000

20000

25000

281

3224 2389

0

5000

10000

15000

20000

25000

Figure 3.6 YCSB Benchmark Test Results.

In (a), the performance of 3 databases are shown for test case – Insert Only.
In (b), the performances of 3 databases are shown for test case – Read Only.
In (c), the performances of 3 databases are shown for test case – Read & Update.

30

MongoDB

Cassandra

HBase

MongoDB

Cassandra

HBase

MongoDB

Cassandra

HBase

Insert Only.
Read Only.
Read & Update.

www.manaraa.com

31

3.2.3 Summary of Benchmark Test Result

We summarize the benchmark test result in 3 test cases.

The benchmark test concludes the following comparison results –

1. ‘Read Only’ and ‘Read & Update’ are much slower than ‘Insert Only’

operations in these NoSQL solutions.

2. Cassandra’s performance in ‘Insert Only’ and ‘Read & Update’ was better

than the other two products. But Cassandra is slower in reading than

writing.

3. HBase’s performance was better than Cassandra in ‘Read Only’.

HBase also shows relatively good performance in ‘Insert Only’ and ‘Read &

Update’.

4. MongoDB’s throughput in all three conditions was the lowest of the

three products.

In the next section, we examine the reason behind the performance variation of each

database.

 Test Case
MongoDB

Performance

Cassandra

Performance

HBase

Performance

1. Insert Only

Satisfactory but

lowest amongst

3 databases

Outstanding

throughput
Relatively Good

2. Read Only

Lowest

amongst 3

databases

Relatively Good
Highest amongst

3 databases

3. Read & Update

Lowest

amongst 3

databases

Highest

amongst 3

databases
Relatively Good

Table 3.6 Summary of YCSB Benchmark Test Result

www.manaraa.com

32

3.3 Benchmark Result Analysis

The benchmark test in the previous section gave different performance result for the

three databases and we summarized the result with 4 conclusions. In this section, we

aim to analyze each result case in the context of Insert/Write and Read operations for

the 3 selected databases – Cassandra, HBase and MongoDB.

3.3.1 Result Case – 1:

‘Read Only’ and ‘Read & Update’ Operation are much Slower than

‘Insert Only’ operation

Both Cassandra and HBase follow Column Family Stores Data model. Internal

architecture of these databases is based on Google’s BigTable model, although,

Cassandra was directly influenced by Amazon’s Dynamo. So, we analyze this result

case in the context of BigTable’s internal structure.

We first present the data model of BigTable.

www.manaraa.com

BigTable Data Model

BigTable is a Column

Multidimensional Sorted Map format and has the

column key> data structure.

Column family is a basic unit that stores data with column groups that are

related to each other.

(i.e. one file per column family), and physically sort the order of data by

column name and timestamp

that a disk block size can store more data. On the other hand, since data

within a column family usually has a similar pattern, data compression can be

very effective.

Based on this data model, BigTable conducts its Write/Read operations. Now, from

the architectural perspective, we identify the reason of performance difference

Write/Read operation for Cassandra and HBase.

Figure 3.7 Column

BigTable Data Model

is a Column-Oriented Database that stores data in a

Multidimensional Sorted Map format and has the <row key, column family,

data structure.

is a basic unit that stores data with column groups that are

related to each other. BigTable store each column family contiguously on disk

one file per column family), and physically sort the order of data by

column name and timestamp. After that, the sorted data will be compressed so

that a disk block size can store more data. On the other hand, since data

within a column family usually has a similar pattern, data compression can be

Based on this data model, BigTable conducts its Write/Read operations. Now, from

the architectural perspective, we identify the reason of performance difference

Cassandra and HBase.

Column-Oriented Database Model of BigTable

33

that stores data in a

<row key, column family,

is a basic unit that stores data with column groups that are

contiguously on disk

one file per column family), and physically sort the order of data by row id,

. After that, the sorted data will be compressed so

that a disk block size can store more data. On the other hand, since data

within a column family usually has a similar pattern, data compression can be

Based on this data model, BigTable conducts its Write/Read operations. Now, from

the architectural perspective, we identify the reason of performance difference in

Oriented Database Model of BigTable

www.manaraa.com

34

 Write Operation in BigTable

Figure 3.7 shows the internal structure of Write/Read path in BigTable –

BigTable model is highly optimized for write operation with sequential write.

In BigTable, data is written basically with the append method. In other words,

when modifying data, the updates are appended to a file, rather than an in-

place update in the stored file.

Write operation is completed in 2 steps –

1. When a write operation is inserted, it is first placed in a memory space

called memtable. All the latest update therefore will be stored at the

memtable at first.

2. If the memtable is full, then the whole data is stored in a file called

SSTable (Sorted String Table). The table is sorted by String key.

Over a period of time there will be multiple SSTables on the disk that

store the data.

Figure 3.8 Data Read/Insert Path of Google’s BigTable

www.manaraa.com

Read Operation in BigTable

Now, while doing ‘Read’ operation

if data is not present in the memtable

1. Whenever a read request is received, the systems will first lookup the

Memtable by its ‘row key

2. If not, it will look at the on

We call this the ‘Merged read’ as the system need to look at multiple places

for the data. SSTable

detect the absence of the row

returns positive will the system be doing a detail lookup within the SSTable.

Figure 3.8

in BigTable

‘Read’ operation, an extra amount of time is needed because

present in the memtable, we need to do ‘Merge Read’

Whenever a read request is received, the systems will first lookup the

row key’ to see if it contains the data. [29]

If not, it will look at the on-disk SSTable to see if the row-key is there.

We call this the ‘Merged read’ as the system need to look at multiple places

SSTable has a companion Bloom filter such that it can rapidly

detect the absence of the row-key. In other words, only when the bloom filter

positive will the system be doing a detail lookup within the SSTable.

Figure 3.8 Read Operation in Google’s BigTable

35

time is needed because

‘Merge Read’ –

Whenever a read request is received, the systems will first lookup the

key is there.

We call this the ‘Merged read’ as the system need to look at multiple places

such that it can rapidly

the bloom filter

positive will the system be doing a detail lookup within the SSTable.

www.manaraa.com

36

Another concept to improve read efficiency is – ‘Periodic Data Compaction’.

As we can imagine, it can be quite inefficient for the read operation when there

are too many SSTables scattering around. Therefore, the system periodically

merges the SSTable, since, each of the SSTable is individually sorted by key,

a simple ‘Merge sort’ is sufficient to merge multiple SSTables into one. The

merge mechanism is based on a logarithm property where two SSTable of the

same size will be merging into a single SSTable, will doubling the size.

Therefore the number of SSTable is proportion to O(logN) where N is the

number of rows.

So, we have discussed the issues behind ‘Write’ and ‘Read’ operation. In the case of

‘Write’ operation, at first, data is recorded in the memory and then, moved to the

actual disk only after a certain amount has been accumulated. It thus improves the

efficiency of ‘Write’ operation. On the other hand, the concept of ‘Merge Read’ and

‘Periodic Data Compaction’ requires extra time to complete ‘Read’ operation.

3.3.2 Result Case – 2:

Cassandra Performance – Faster in Writing than Reading

As we mentioned before, Cassandra additionally uses Amazon’s Dynamo Model

along with Google’s BigTable model. Cassandra follows Dynamo’s DHT (distributed

hash table) model to partition its data. It is known as ‘Consistent Hashing’.

Through ‘Consistent Hashing’, each machine (node) is associated with a particular

id that is distributed in a keyspace (e.g. 128 bit). The entire data element is also

associated with a key (in the same key space). The server owns all the data whose

key lies between its id and the preceding server's id.

www.manaraa.com

Now, in this analysis, we state the steps that Cassandra goes through to complete

‘Write’ and ‘Read’ operation. Thus, difference between ‘Write’ and ‘Read’

performance will be revealed.

Write Operation in Cassandra

The steps during ‘Write’ operation in Cassandra is as follows

1. Client submits its write request to a single, random Cassandra node.

2. This node acts as a proxy and writes the data to the cluster

of nodes is stored as a “ring” of nodes

3. Now, using the ‘Replication Placement Strategy’

to N nodes. [31]

4. Finally, the node waits for the N successes and the

client.

Figure 3.9

n this analysis, we state the steps that Cassandra goes through to complete

’ operation. Thus, difference between ‘Write’ and ‘Read’

performance will be revealed.

Write Operation in Cassandra

The steps during ‘Write’ operation in Cassandra is as follows –

Client submits its write request to a single, random Cassandra node.

This node acts as a proxy and writes the data to the cluster

of nodes is stored as a “ring” of nodes.

Replication Placement Strategy’, writes are replicated

Finally, the node waits for the N successes and then returns success to the

Figure 3.9 Simple Partition Strategies in Cassandra

37

n this analysis, we state the steps that Cassandra goes through to complete

’ operation. Thus, difference between ‘Write’ and ‘Read’

Client submits its write request to a single, random Cassandra node. [30]

 where cluster

rites are replicated

n returns success to the

Simple Partition Strategies in Cassandra

www.manaraa.com

38

In case any node is failed, the write operation can be retried at a later using

‘Hinted handoff’. According to this process, the failed operation will pick a

random node as a handoff node and write the request with a hint telling it to

forward the write request back to the failed node after it recovers. The

handoff node will then periodically check for the recovery of the failed node

and forward the write to it. Therefore, the original node will eventually

receive the entire write request.

 In this way, Cassandra performs a faster ‘Write’ operation that ensures

‘Availability’ (Figure 2.1: CAP Theorem).

Read Operation in Cassandra

The steps during ‘Write’ operation in Cassandra is as follows –

1. A client makes a read request to a random node. [32]

2. The node acts as a proxy determining the nodes having copies of data.

3. The node requests the corresponding data from each node.

4. Now, while returning data, Cassandra allows the client to select the

strength of the read consistency –

Single read: The proxy returns the first response it gets. This can easily

return stale data. [33]

Quorum read: The proxy waits for a majority to respond with the same

value.

5. Finally, a value will be returned to client and thus, ‘Read’ operation is

completed.

In the background, the proxy also performs ‘Read Repair’ on any

inconsistent responses. According to that method, when the client performs

www.manaraa.com

39

a ‘Read’, the proxy node will issue N reads but only wait for R copies of

responses and return the one with the latest version. In case some nodes

respond with an older version, the proxy node will send the latest version to

them asynchronously; hence these left-behind nodes will still eventually

catch up with the latest version.

We state an example here. For example, we have a key “A” with a value of

“123” in our cluster. Now we update “A” to be “456”. The write is sent to N

different nodes, each of which takes some time to write the value. Now we

ask for a read of “A”. Some of those nodes might still have “123” for the

value while others have “456”. They will all eventually return “456”. This is

also known as ‘Eventual Consistency’.

The situation in ‘Quorum Read’ makes it much more difficult to get stale data but

this is the reason why ‘Read’ operation in Cassandra tends to be slower than ‘Write’

operation.

So, we have discussed the issues behind ‘Write’ and ‘Read’ operation. Since the

success of replicated writing is not guaranteed, the data suitability is checked in the

reading stage. That makes Cassandra to give slower performance in ‘Read’ operation

than ‘Write’ operation.

www.manaraa.com

40

3.3.3 Result Case – 3:

HBase Performance – Faster in Reading compared to Cassandra

HBase has the same structure as BigTable. Based on the BigTable, HBase uses the

Hadoop Distributed File System (HDFS) as its data storage engine. The advantage

of this approach is then HBase doesn't need to worry about data replication, data

consistency and resiliency because HDFS has handled it already.

So far we have analyzed that Cassandra is faster in ‘Write’ operation than ‘Read’

operation. But Figure 3.6(b) shows that HBase has better performance in ‘Read’

operation than Cassandra. So, in this section, we aim to identify the reason for what

HBase shows the faster performance in ‘Reading’ than Cassandra by analyzing both

‘Write’ and ‘Read’ paths of HBase Memstore.

Figure 3.10 Memstore Usage in HBase Read/Write Paths

www.manaraa.com

41

Write Operation in HBase

The ‘Write’ paths in HBase can be described as follows –

� RegionServer (RS) receives write request and it directs the request to

specific Region. [34]

� Each Region stores set of rows. Rows data can be separated in multiple

Column Families (CFs).

� Data of particular CF is stored in HStore which consists of Memstore

and a set of HFiles.

� Memstore is kept in RS main memory, while HFiles are written to

HDFS.

� When write request is processed, data is first written into the Memstore.

Then, when certain thresholds are met (obviously, main memory is well-

limited) Memstore data gets flushed into HFile.

Read Operation in HBase Memstore

The reading end things in HBase are simple –

HBase first checks if requested data is in Memstore, then goes to HFiles and

returns merged result to the user.

The discussion concludes that HBase only ‘writes’ on a single region in the beginning,

and receives requests on only one node. While ‘reading’, HBase only reads data once.

On the other hand, Cassandra reads the data three times to check data suitability.

So, ‘Reading’ performance of HBase is faster compared to Cassandra.

www.manaraa.com

42

3.3.4 Result Case – 4:

MongoDB Performance – Lowest Throughput among the 3 Databases

The benchmark test of YCSB in Section 3.2 shows that MongoDB has the lowest

performance in all 3 cases among the 3 databases. We identify the reason behind the

scenario in this section –

1. Unlike Cassandra and HBase, MongoDB does not follow ‘Column Family

Stores’ data model. Rather, MongoDB uses a ‘Document Database’ model.

According to this data model, each key is associated with a nested amount of

values. So, memory size plays an important role in MongoDB. MongoDB

operates on a memory base and places high performance above data

scalability. If reading and writing is conducted within the usable memory,

then high-performance is possible. However, performance is not guaranteed if

operations exceed the given memory. That is the reason why MongoDB shows

poor performance in all 3 cases.

2. However, the MongoDB has been found to record greater performance than

Cassandra or HBase, if 300 thousand records are taken instead of 50 million

as workload.

So, MongoDB can be used quickly, schema-free when using a certain amount of data.

To conclude the performance result, each NOSQL database has its distinct

functionalities. MongoDB is used in Foursquare, SourceForge, The New York Times

[Table 2.1]. Cassandra is used in social websites like Digg, Facebook, Twitter [Table

2.1]. HBase is also used in Facebook [Table 2.1]. So, every database has usage in

cloud computing. All we need to pick the appropriate database tool according to the

need of application.

www.manaraa.com

43

Chapter 4

Big Data Analytics:

Hadoop & MapReduce – A New Challenge

Big data is big news and so too analytics on big data. Technologies for analyzing big

data are evolving rapidly and there is significant interest in new analytic approaches

such as Hadoop and MapReduce [35]. We analyzed a newly evolving NOSQL

database in previous chapter. Now, in this chapter, we aim to make investigation on

Hadoop and MapReduce.

4.1 MapReduce

MapReduce is a technique popularized by Google that distributes the processing of

very large multi-structured data files across a large cluster of machines [36]. High

performance is achieved by breaking the processing into small units of work that

can be run in parallel across the hundreds, potentially thousands, of nodes in the

cluster.

www.manaraa.com

44

To quote the seminal paper on MapReduce:

“MapReduce is a programming model and an associated implementation for

processing and generating large data sets. Programs written in this

functional style are automatically parallelized and executed on a large cluster

of commodity machines. This allows programmers without any experience

with parallel and distributed systems to easily utilize the resources of a large

distributed system.”

The key point to note from this quote is that MapReduce is a programming model,

not a programming language, i.e., it is designed to be used by programmers, rather

than business users.

 So, if we have to then we can define MapReduce in one sentence as –

“MapReduce is a programming model for automating parallel computing.”

4.1.1 Fundamental Pieces of MapReduce query

There are two fundamental pieces of a MapReduce query –

 Map

The master node takes the input, chops it up into smaller sub-problems, and

distributes those to worker nodes [37]. A worker node may do this again in

turn, leading to a multi-level tree structure. The worker node processes that

smaller problem, and passes the answer back to its master node.

Reduce

The master node then takes the answers to all the sub-problems and

combines them in a way to get the output - the answer to the problem it was

originally trying to solve.

www.manaraa.com

45

Programs written in this functional style are automatically parallelized and

executed on a large cluster of commodity machines. The runtime system takes care

of the details of partitioning the input data, scheduling the program's execution

across a set of machines, handling machine failures, and managing the required

inter-machine communication. The user of the MapReduce library expresses the

computation as two functions: Map and Reduce. Map, written by the user, takes an

input pair and produces a set of intermediate key/value pairs. The MapReduce

library groups together all intermediate values associated with the same

intermediate key I and passes them to the Reduce function. The Reduce function,

also written by the user, accepts an intermediate key I and a set of values for that

key. It merges together these values to form a possibly smaller set of values.

Typically just zero or one output value is produced per Reduce invocation. The

intermediate values are supplied to the user's reduce function via an iterator. This

allows handling lists of values that are too large to fit in memory.

Figure 4.1 MapReduce Execution Overview

www.manaraa.com

46

4.1.2 MapReduce Usage

MapReduce aids organizations in processing and analyzing large volumes of multi-

structured data. Application examples include indexing and search, graph analysis,

text analysis, machine learning, data transformation, and so forth. These types of

applications are often difficult to implement using the standard SQL employed by

relational DBMSs.

The procedural nature of MapReduce makes it easily understood by skilled

programmers. It also has the advantage that developers do not have to be concerned

with implementing parallel computing – this is handled transparently by the system.

Although MapReduce is designed for programmers, non-programmers can exploit the

value of prebuilt MapReduce applications and function libraries. Both commercial

and open source MapReduce libraries are available that provide a wide range of

analytic capabilities. Apache Mahout, for example, is an open source machine-

learning library of “algorithms for clustering, classification and batch-based

collaborative filtering” that are implemented using MapReduce.

4.1.3 Application Development

MapReduce programs are usually written in Java, but they can also be coded in

languages such as C++, Perl, Python, Ruby, R, etc. These programs may process

data stored in different file and database systems. At Google, for example,

MapReduce was implemented on top of the Google File System (GFS).

One of the main deployment platforms for MapReduce is the open source Hadoop

distributed computing framework provided by Apache Software Foundation.

Hadoop supports MapReduce processing on several file systems, including the

www.manaraa.com

47

Hadoop Distributed File System (HDFS), which was motivated by GFS. Hadoop

also provides Hive and Pig, which are high-level languages that generate

MapReduce programs. Several vendors offer open source and commercially

supported Hadoop distributions; examples include Cloudera, DataStax,

Hortonworks (a spinoff from Yahoo) and MapR. Many of these vendors have added

their own extensions and modifications to the Hadoop open source platform.

Another direction of vendors is to support MapReduce processing in relational

DBMSs. These are implemented as in-database analytic functions that can be used in

SQL statements. These functions are run inside the database system, which enables

them to benefit from the parallel processing capabilities of the DBMS. Supported in

the Teradata Aster MapReduce Platform, the Aster Database provides a number of

built-in MapReduce functions for use with SQL. It also includes an interactive

development environment, Aster Developer Express, for programmers to create their

own MapReduce functions.

4.2 Hadoop

As we have stated before, Google was the first to publicize MapReduce, a system

they had used to scale their data processing needs. This system aroused a lot of

interest because many other businesses were facing similar scaling challenges, and

it wasn't feasible for everyone to reinvent their own proprietary tool. Doug Cutting2

saw an opportunity and led the charge to develop an open source version of this

MapReduce system called Hadoop, Yahoo and others rallied around to support this

effort. Today, Hadoop is a core part of the computing infrastructure for many web

2
 Douglas Read Cutting is an advocate and creator of open-source search technology. He originated

Lucene and, with Mike Cafarella, Nutch, both open-source search technology projects which are now
managed through the Apache Software Foundation.

www.manaraa.com

48

companies, such as Yahoo, Facebook, LinkedIn, and Twitter. Many more traditional

businesses, such as media and telecom, are beginning to adopt this system too.

Here, we describe the fundamental idea of Hadoop.

Hadoop is a generic processing framework designed to execute queries and other

batch read operations against massive datasets that can be tens or hundreds of

terabytes and even petabytes in size. The data is loaded into or appended to the

Hadoop Distributed File System (HDFS). Hadoop then performs brute force scans

through the data to produce results that are output into other files. It probably does

not qualify as a database since it does not perform updates or any transactional

processing. Hadoop also does not support such basic functions as indexing or a SQL

interface, although there are additional open source projects underway to add these

capabilities.

Hadoop operates on massive datasets by horizontally scaling (aka scaling out) the

processing across very large numbers of servers through an approach called

MapReduce. Vertical scaling (aka scaling up), i.e., running on the most powerful

single server available, is both very expensive and limiting. There is no single server

available today or in the foreseeable future that has the necessary power to process so

much data in a timely manner.

Figure 4.2 Clusters of machine running Hadoop at Yahoo! (Source: Yahoo!)

www.manaraa.com

49

Hundreds or thousands of small, inexpensive, commodity servers do have the power if

the processing can be horizontally scaled and executed in parallel. Using the

MapReduce approach, Hadoop splits up a problem, sends the sub-problems to

different servers, and lets each server solve its sub-problem in parallel. It then

merges all the sub-problem solutions together and writes out the solution into files

which may in turn be used as inputs into additional MapReduce steps.

Hadoop has been particularly useful in environments where massive server farms are

being used to collect the data. Hadoop is able to process parallel queries as big,

background batch jobs on the same server farm. This saves the user from having to

acquire additional hardware for a database system to process the data. Most

importantly, it also saves the user from having to load the data into another system.

The huge amount of data that needs to be loaded can make this impractical.

4.2.1 What is Hadoop Good For

When the original MapReduce algorithms were released, and Hadoop was

subsequently developed around them, these tools were designed for specific uses. The

original use was for managing large data sets that needed to be easily searched. As

time has progressed and as the Hadoop ecosystem has evolved, several other specific

uses have emerged for Hadoop as a powerful solution.

In this part, we summarize Hadoop usage.

Large Data Sets

MapReduce paired with HDFS is a successful solution for storing large

volumes of unstructured data.

www.manaraa.com

50

Scalable Algorithms

Any algorithm that can scale too many cores with minimal inter-process

communication will be able to exploit the distributed processing capability of

Hadoop.

Log Management

Hadoop is commonly used for storage and analysis of large sets of logs from

diverse locations. Because of the distributed nature and scalability of Hadoop,

it creates a solid platform for managing, manipulating, and analyzing diverse

logs from a variety of sources within an organization.

Extract-Transform-Load (ETL) Platform

Many companies today have a variety of data warehouse and diverse

relational database management system (RDBMS) platforms in their IT

environments. Keeping data up to date and synchronized between these

separate platforms can be a struggle. Hadoop enables a single central

location for data to be fed into, then processed by ETL-type jobs and used to

update other, separate data warehouse environments.

4.2.2 Hadoop Distributed File System (HDFS)

The Hadoop Distributed File System (HDFS) is designed to store very large data

sets reliably, and to stream those data sets at high bandwidth to user applications.

In a large cluster, thousands of servers both host directly attached storage and

execute user application tasks. By distributing storage and computation across

many servers, the resource can grow with demand while remaining economical at

every size.

www.manaraa.com

51

HDFS is the file system component of Hadoop. HDFS stores file system metadata

and application data separately. Hadoop has a variety of node types within each

Hadoop cluster; these include DataNodes, NameNodes, and EdgeNodes. Names of

these nodes can vary from site to site, but the functionality is common across the

sites.

The base node types for a Hadoop cluster are described below [38] –

 NameNode

The NameNode is the central location for information about the file system

deployed in a Hadoop environment. An environment can have one or two

NameNodes, configured to provide minimal redundancy between the

NameNodes. The NameNode is contacted by clients of the Hadoop Distributed

File System (HDFS) to locate information within the file system and provide

updates for data they have added, moved, manipulated, or deleted.

Figure 4.3 HDFS Architecture

www.manaraa.com

52

DataNode

DataNodes make up the majority of the servers contained in a Hadoop

environment. Common Hadoop environments will have more than one

DataNode, and oftentimes they will number in the hundreds based on capacity

and performance needs. The DataNode serves two functions: It contains a

portion of the data in the HDFS and it acts as a computing platform for

running jobs, some of which will utilize the local data within the HDFS.

EdgeNode

The EdgeNode is the access point for the external applications, tools, and users

that need to utilize the Hadoop environment. The EdgeNode sits between the

Hadoop cluster and the corporate network to provide access control, policy

enforcement, logging, and gateway services to the Hadoop environment. A

typical Hadoop environment will have a minimum of one EdgeNode and more

based on performance needs.

4.2.3 MapReduce in Hadoop

HDFS delivers inexpensive, reliable, and available file storage. That service alone,

though, would not be enough to create the level of interest, or to drive the rate of

adoption, that characterizes Hadoop over the past several years. The second major

component of Hadoop is the parallel data processing system called MapReduce.

Conceptually, MapReduce is simple.

MapReduce includes a software component called the job scheduler. The job

scheduler is responsible for choosing the servers that will run each user job, and for

scheduling execution of multiple user jobs on a shared cluster. The job scheduler

consults the NameNode for the location of all of the blocks that make up the file or

www.manaraa.com

files required by a job. Each of those servers is instructed to run the user’s analysis

code against its local block or blocks. The MapReduce processing infrastructure

includes an abstraction called an

individual records. There is special processing built in to reassemble records broken

by block boundaries. The user code that implements a map job can be virtually

anything. MapReduce allows developers to write and deploy code that runs directly

on each DataNode server in the cluster. That code understands the format of the data

stored in each block in the file,

number of occurrences of a single word, for example) or much more complex ones (e.g.

natural language processing, pattern detection and machine learning, feature

extraction, or face recognition).

At the end of the map phase of a job, results are collected and filtered by a

MapReduce guarantees that data will be delivered to the reducer in sorted

output from all mappers is collected and passed through a

The sorted output is then passed to the reducer for processing. Results are typically

written back to HDFS.

Figure 4.4

files required by a job. Each of those servers is instructed to run the user’s analysis

code against its local block or blocks. The MapReduce processing infrastructure

includes an abstraction called an input split that permits each block to be broken into

individual records. There is special processing built in to reassemble records broken

by block boundaries. The user code that implements a map job can be virtually

anything. MapReduce allows developers to write and deploy code that runs directly

taNode server in the cluster. That code understands the format of the data

stored in each block in the file, and can implement simple algorithms (count the

number of occurrences of a single word, for example) or much more complex ones (e.g.

e processing, pattern detection and machine learning, feature

extraction, or face recognition).

At the end of the map phase of a job, results are collected and filtered by a

MapReduce guarantees that data will be delivered to the reducer in sorted

output from all mappers is collected and passed through a shuffle and sort

The sorted output is then passed to the reducer for processing. Results are typically

Figure 4.4 Model of Hadoop MapReduce

53

files required by a job. Each of those servers is instructed to run the user’s analysis

code against its local block or blocks. The MapReduce processing infrastructure

that permits each block to be broken into

individual records. There is special processing built in to reassemble records broken

by block boundaries. The user code that implements a map job can be virtually

anything. MapReduce allows developers to write and deploy code that runs directly

taNode server in the cluster. That code understands the format of the data

and can implement simple algorithms (count the

number of occurrences of a single word, for example) or much more complex ones (e.g.

e processing, pattern detection and machine learning, feature

At the end of the map phase of a job, results are collected and filtered by a reducer.

MapReduce guarantees that data will be delivered to the reducer in sorted order, so

shuffle and sort process.

The sorted output is then passed to the reducer for processing. Results are typically

www.manaraa.com

54

Because of the replication built into HDFS, MapReduce is able to provide some other

useful features. For example, if one of the servers involved in a MapReduce job is

running slowly — most of its peers have finished, but it is still working — the job

scheduler can launch another instance of that particular task on one of the other

servers in the cluster that stores the file block in question. This means that

overloaded or failing nodes in a cluster need not stop, or even dramatically slow

down, a MapReduce job.

An important part of our thesis includes Hadoop configuration and testing

MapReduce function on Hadoop framework. We have performed this task on single

node cluster. This paper shows the steps of ‘Configuring Virtual Machines with

Hadoop’ in Appendix A and then, an experiment is included on ‘Testing MapReduce

Program’ in Appendix B.

www.manaraa.com

55

Chapter 5

Hive – Data Warehouse

Using Hadoop

In the previous chapter, we investigated on popular Hadoop framework. One

disadvantage of Hadoop is that it is not easy for end users, especially for the ones who

are not familiar with map/reduce. Hadoop lacked the expressibility of popular query

languages like SQL and as a result users ended up spending hours to write programs

for typical analysis [39]. So, it is very clear that in order to really empower the

companies to analyze their data more productively, it is necessary to improve the

query capabilities of Hadoop. Bringing this data closer to users is what inspired to

build Hive. This paper focuses on Hive because it has gained the most acceptance in

the industry like Facebook and also because it’s SQL-like syntax makes it easy to use

by non-programmers who are comfortable using SQL.

In this chapter, we aim to investigate on Hive and make an experiment on Hive

wrapper on top of Hadoop.

www.manaraa.com

56

5.1 Hive

Hive is a data warehouse system for Hadoop that facilitates easy data

summarization, ad-hoc queries, and the analysis of large datasets stored in Hadoop

compatible file systems. Hive provides a mechanism to project structure onto this

data and query the data using a SQL-like language called HiveQL. The query

language can be easily understood by anyone familiar with SQL. At the same time

this language also allows traditional map/reduce programmers to plug in their

custom mappers and reducers when it is inconvenient or inefficient to express this

logic in HiveQL.

5.2 Hive Architecture

The main components of Hive are illustrated in Figure 5.1. HiveQL statements can

be entered using a command line or Web interface, or may be embedded in

applications that use ODBC and JDBC interfaces to the Hive system. The Hive

Driver system converts the query statements into a series of MapReduce jobs.

The main components of Hive are –

UI

The user interface for users to submit queries and other operations to the

system. Currently the system has a command line interface and a web based

GUI is being developed.

www.manaraa.com

57

Driver

The component which receives the queries. This component implements the

notion of session handles and provides execute and fetch APIs modeled on

JDBC/ODBC interfaces.

Compiler

The component that parses the query, does semantic analysis on the different

query blocks and query expressions and eventually generates an execution

plan with the help of the table and partition metadata looked up from the

Metastore.

Metastore

The component that stores all the structure information of the various table

and partitions in the warehouse including column and column type

Figure 5.1 Hive Architecture

www.manaraa.com

58

information, the serializers and deserializers necessary to read and write

data and the corresponding hdfs files where the data is stored.

Execution Engine

The component which executes the execution plan created by the compiler.

The plan is a DAG of stages. The execution engine manages the dependencies

between these different stages of the plan and executes these stages on the

appropriate system components.

5.3 Hive Data Models

Similar to traditional databases, Hive stores data in tables, where each table consists

of a number of rows, and each row consists of a specified number of columns. We

describe Hive data model components below –

Tables

These are analogous to Tables in Relational Databases. Tables can be filtered,

projected, joined and unioned. Additionally all the data of a table is stored in a

directory in hdfs. Hive also supports notion of external tables wherein a table

can be created on preexisting files or directories in hdfs by providing the

appropriate location to the table creation DDL. The rows in a table are

organized into typed columns similar to Relational Databases. [40]

Partitions

Each Table can have one or more partition keys which determine how the data

is stored e.g. a table T with a date partition column ds had files with data for a

particular date stored in the <table location>/ds=<date> directory in hdfs.

www.manaraa.com

59

Partitions allow the system to prune data to be inspected based on query

predicates, e.g. a query that in interested in rows from T that satisfy the

predicate T.ds = '2008-09-01' would only have to look at files in <table

location>/ds=2008-09-01/ directory in hdfs.

Buckets

Data in each partition may in turn be divided into Buckets based on the hash

of a column in the table. Each bucket is stored as a file in the partition

directory. Bucketing allows the system to efficiently evaluate queries that

depend on a sample of data (these are queries that use SAMPLE clause on the

table).

5.4 HiveQL in Hadoop

Data files in Hive are seen in the form of tables (and views) with columns to

represent fields and rows to represent records. Tables can be vertically partitioned

based on one or more table columns. The data for each partition is stored in a

separate HDFS file. Data is not validated against the partition definition during the

loading of data into the HDFS file. Partitions can be further split into buckets by

hashing the data values of one or more partition columns. Buckets are stored in

separate HDFS files and are used for sampling and for building a Hive index on an

HDFS file. Hive tables do not support the concepts of primary or foreign keys or

constraints of any type. All definitions are maintained in the Hive metastore, which is

a relational database such as MySQL.

 Data types supported by Hive include primitive types such as integers, floating

point numbers, strings and Boolean. A timestamp data type is provided in Hive

www.manaraa.com

60

0.8.0. Hive also supports complex types such as arrays (indexed lists), maps (key

value pairs), structs (structures) and user-defined types.

External HDFS files can be defined to Hive as external tables. Hive also allows

access to data stored in other file and database systems such as HBase. Access to

these data stores is enabled via storage handlers that present the data to Hive as

non-native tables. The HiveQL support (and restrictions) for these non-native tables

is broadly the same as that for native tables.

HiveQL supports a subset of the SQL SELECT statement operators and syntax,

including:

• Join (equality, outer, and left semi-joins are supported)

• Union

• Subqueries (supported in the FROM clause only)

• Relational, arithmetic, logical and complex type operators

• Arithmetic, string, date, XPath, and user-defined functions including

aggregate and table functions (UDFs, UDAFs, UDTFs)

The Hive MAP and REDUCE operators can be used to embed custom MapReduce

scripts in HiveQL queries. An INSERT statement is provided, but it can only be

used to load or replace a complete table or table partition. The equivalents of the

SQL UPDATE and DELETE statements are not supported.

 When comparing Hadoop Hive to a relational DBMS employing SQL, two areas

have to be considered: query language syntax and query performance. Query

language syntax is a moving target in both Hadoop Hive and relational DBMS

products. Although Hive provides a useful subset (and superset) of SQL

www.manaraa.com

61

functionality, it is highly probable that existing SQL-based user applications and

vendor software would need to be modified and simplified to work with Hive.

Perhaps the most important comparison between Hadoop Hive and the relational

DBMS environment concerns performance. Such comparisons should consider

traditional short and/or ad-hoc SQL-like queries running on Hive versus a

relational DBMS, and also MapReduce performance on Hive compared with using

SQL MapReduce relational DBMS functions for querying and analyzing large

volumes of multi-structured data. Knowledge of the way Hive and relational

DBMSs process queries is useful when discussing the performance of the two

approaches.

Hive provides an SQL wrapper on top of Hadoop HDFS (and other storage systems).

It has no control or knowledge of the placement or location of data in HDFS files.

The Hive optimizer uses rules to convert HiveQL queries into a series of MapReduce

jobs for execution on a Hadoop cluster. Hints in HiveQL queries can aid the

optimization process, for example, to improve the performance of join processing.

Hive-generated MapReduce jobs sequentially scan the HDFS files used to store the

data associated with a Hive table. The Hive optimizer is partition and bucket

aware, and so table partitions and buckets can be used to reduce the amount of data

scanned by a query. Hive supports compact indexes (in 0.7.0) and bitmapped

indexes (in 0.8.0), which aid lookup and range queries, and also enable certain

queries to be satisfied by index-only access. Since Hive has no knowledge of the

actual physical location of the data in an HDFS file, the Hive indexes contain data

rather than pointers to data. A table index will need to be rebuilt if the data in a

table partition is refreshed. Hive does, however, support partitioned indexes. Hive

indexes aid the performance of traditional SQL-like queries, rather than

MapReduce queries, which by their nature involve sequential processing.

www.manaraa.com

62

The primary use case for Hadoop Hive is the same as that for Hadoop MapReduce,

which is the sequential processing of very large multi-structured data files such as

Web logs. It is not well suited to ad- hoc queries where the user expects fast

response times. The positioning of Hive is aptly described on the Apache Hive Wiki.

“Hive is not designed for OLTP workloads and does not offer real-time queries or

row-level updates. It is best used for batch jobs over large sets of append-only data

(like Web logs). What Hive values most is scalability (scale out with more machines

added dynamically to the Hadoop cluster), extensibility (with MapReduce

framework and UDF/UDAF/UDTF), fault-tolerance, and loose-coupling with its

input formats.

The main benefit of Hive is that it dramatically improves the simplicity of

MapReduce development. The Hive optimizer also makes it easier to process

interrelated files as compared with hand-coding MapReduce procedural logic to do

this. The Hive optimizer, however, is still immature and is not fully insulated from

the underlying file system, which means that for more complex queries, the Hive user

is still frequently required to aid the optimizer through hints and certain HiveQL

language constructions.

There are many other tools for improving the usability of Hadoop, e.g., Informatica

HParser for data transformation, and Karmasphere Studio, Pentaho Business

Analytics and Revolution RevoConnectR for analytical processing. Most of these tools

are front ends to Hadoop MapReduce and HDFS, and so many of the considerations

discussed above for Hive apply equally to these products.

This paper includes an experiment on ‘Testing HiveQL on Hadoop framework’.

Appendix C describes the steps of ‘Configuration of Hive’ and Appendix D presents

the procedure of ‘Testing HiveQL’.

www.manaraa.com

63

Chapter 6

Discussion

Today, we're surrounded by data. People upload videos, take pictures on their cell

phones, text friends, update their Facebook status, leave comments around the web,

click on ads, and so forth. Machines, too, are generating and keeping more and more

data. The exponential growth of data first presented challenges to cutting-edge

businesses such as Google, Yahoo, Amazon, and Microsoft. They needed to go

through exabytes and zettabytes of data to figure out which websites were popular,

what books were in demand, and what kinds of ads appealed to people. Existing

tools were becoming inadequate to process such large data sets. So, new

technologies have emerged.

The idea behind this thesis is aimed at making investigation on newer approaches

of cloud data storages. We have conducted the comparison study on ‘SQL vs.

NOSQL’ issue that is considered as an important debate in cloud world. Then, we

made research on different branches of newly evolving NOSQL database. NOSQL

database contains a magnificent field in cloud computing. So, we picked 3 popular

www.manaraa.com

64

NOSQL databases – MongoDB, Cassandra and HBase to explore. Later, a case

study has been conducted to identify the distinct usage properties of each database.

In the next part of investigation, we also conducted an experiment on best knowing

framework – Hadoop and data warehouse system – Hive. This combination of

Hadoop - Hive was known to serve data storage of big website like Facebook.

There is no doubt that the work done here is the root of further research on NOSQL

database and ‘Big Data Analytics’. In future, we aim to make research on more

NOSQL databases and perform a real-time benchmark test of NOSQL databases

using YCSB in Cloud environment.

Also, in our thesis, we implemented Hadoop and Hive and evaluated MapReduce

function and HiveQL. These works have been done on single-node-cluster. Our future

plan from this part is to test HiveQL and MapReduce on multi-node-cluster.

www.manaraa.com

65

Appendix A

Configuring Virtual Machines

with Hadoop

In this appendix, the required steps for setting up a Hadoop single node cluster using

the Hadoop Distributed File System (HDFS) on Ubuntu Linux will be described.

A.1 Running Hadoop on Single Node Cluster

This experiment has been tested with the following software version:

• Ubuntu Linux 11.04

• Hadoop 0.20.2

• Hive 0.8.1

Prerequisites

� At first we set up the Virtual Machine [Oracle VM Virtual Box]

� Then we install the Ubuntu version 11.04

� After that configure the NAT(it is important for getting net connection)

www.manaraa.com

66

NAT Configuration

A.1.1. Changing root password

A.1.2. Adding Hadoop User

A.1.3. Providing Sudo Privilege to Hadoop User

Machine-->Setting-->Network-->NAT-->OK (Done)

sumaiya@VMHadoop:~$ sudopasswd
[sudo] password for sumaiya:
Enter new UNIX password:
Retypenew UNIX password:
passwd: password updated successfully

#useraddhadoop
#mkdir /home/hadoop
#chown -R hadoop:hadoop /home/hadoop
#usermod -d /home/hadoophadoop

#passwdhadoop
newpassword:hadoop

#usermod -a -G sudohadoop
#login as root
#chmodu+w /etc/sudoers
#vi /etc/sudoers

www.manaraa.com

67

//Inserting the below line into the File

A.1.4. Checking Hadoop’s Sudo Privilege

A.1.5. Changing shell for Hadoop User

A.1.6 Installing ODBC Components

hadoop ALL=(ALL:ALL)ALL

#chmod u-w /etc/sudoers
#su - hadoop
//checking whether hadoop user is getting sudo privilege or not
$cat /etc/sudoers //this will show permission denied
$sud cat /etc/sudoers //this will work as hadoop user got sudo privilege

$sudo vi/etc/passwd

(change shell of hadoop from /bin/sh to /bin/bash)

$sudo add-apt-repository "deb http://archive.canonical.com/
lucid partner"

$ sudo apt-get -f install unixodbc

www.manaraa.com

68

$ sudo apt-get -f install odbcinst1debian2

$ sudo apt-get -f install odbcinst

www.manaraa.com

69

A.1.7. Installing Java

Quick Check for SUN JDK’s Correct Set Up:

#mkdir /mnt/share //Creating a share mount point for host OS
#chown -R hadoop:hadoop /mnt/share
$sudo mount -t vboxsfhadoop_software /mnt/share
$ sudomkdir /usr/lib/jvm/ //Creating JAVA Home Directory
$cd /mnt/share
$sudocp jdk-7u6-linux-i586.tar.gz /usr/lib/jvm //copying java software to guest OS
from host OS

$ sudo tar zxvf jdk-7u6-linux-i586.tar.gz //unzip the java software
$ sudo mv jdk-7u6-linux-i586 /usr/lib/jvm/

$ sudo update-alternatives --install /usr/bin/java java
/usr/lib/jvm/jdk1.7.0_06/bin/java 1
$ sudo update-alternatives --install /usr/bin/javacjavac
/usr/lib/jvm/jdk1.7.0_06/bin/javac 1

$ sudo update-alternatives --configjavac
$ sudo update-alternatives --config java

www.manaraa.com

70

A.1.8. Configuring SSH

$ sudo add-apt-repository "deb http://archive.canonical.com/ lucid partner"

$ sudo apt-get upgrade openssh-client openssh-server

//Generate an SSH key for the hadoop:

$ su - hadoop
$ ssh-keygen -t rsa -P ""

$ cat $HOME/.ssh/id_rsa.pub >> $HOME/.ssh/authorized_keys

www.manaraa.com

71

$ sudo apt-get install openssh-server openssh-client

//now below will not prompt for password
$ sshlocalhost

www.manaraa.com

72

A.1.9. Disabling IPV6

//Open /etc/sysctl.conf and add the following lines to the end of the file:

$sudovi /etc/sysctl.conf

#disable ipv6
net.ipv6.conf.all.disable_ipv6 = 1
net.ipv6.conf.default.disable_ipv6 = 1
net.ipv6.conf.lo.disable_ipv6 = 1

//Reboot the machine in order to make the changes take effect.

//You can check whether IPv6 is enabled on your machine with the following
command:

$ cat /proc/sys/net/ipv6/conf/all/disable_ipv6
1

www.manaraa.com

73

A.1.10. Installing and Configuring Hadoop:

$sudo mount -t vboxsfhadoop_software /mnt/share
//extract and change ownership to hadoop user
$cd /mnt/share
$sudocphadoop-0.20.2.tar.gz/usr/local
$cd /usr/local
$sudochownhadoop:hadoophadoop-0.20.2.tar.gz
$sudo tar xzf hadoop-0.20.2.tar.gz
$sudo mv hadoop-0.20.2 hadoop
$sudochown -R hadoop:hadoophadoop

www.manaraa.com

74

A.1.11. Setting Profile for Hadoop User

//Add the following lines to the end of the $HOME/.bashrc file of user hadoopuser:

##########hadoop related config#############
Set Hadoop-related environment variables
export HADOOP_HOME=/usr/local/hadoop
export HIVE_HOME=/usr/local/hive

Set JAVA_HOME (we will also configure JAVA_HOME directly for
Hadoop later on)
#export JAVA_HOME=/usr/lib/jvm/jdk1.7.0_05/
export JAVA_HOME=/usr/lib/jvm/jdk1.7.0_06/

Some convenient aliases and functions for running Hadoop-related
commands
unaliasfs&> /dev/null
aliasfs="hadoopfs"
unaliashls&> /dev/null
aliashls="fs -ls"

If you have LZO compression enabled in your Hadoop cluster and
compress job outputs with LZOP (not covered in this tutorial):
Conveniently inspect an LZOP compressed file from the command
line; run via:

$ lzohead /hdfs/path/to/lzop/compressed/file.lzo

Requires installed 'lzop' command.

lzohead () {
hadoopfs -cat $1 | lzop -dc | head -1000 | less
}

AddHadoop bin/ directory to PATH
export PATH=$PATH:$HADOOP_HOME/bin

www.manaraa.com

75

A.1.12. Editing Hadoop’s hadoop-eng.sh file

A.1.13. Editing necessary XML files

$sudovi /usr/local/hadoop/conf/hadoop-env.sh

//Change:

The java implementation to use. Required.
export JAVA_HOME=/usr/lib/j2sdk1.5-sun

//To:

The java implementation to use. Required.
export JAVA_HOME=/usr/lib/jvm/jdk1.7.0_06/

//Add the following snippets between the <configuration> ...
</configuration> tags in the respective configuration XML file.

$sudovi /usr/local/hadoop/conf/core-site.xml

<!-- In: conf/core-site.xml -->
<property>
<name>hadoop.tmp.dir</name>
<value>/app/hadoop/tmp</value>
<description>A base for other temporary directories.</description>
</property>

<property>
<name>fs.default.name</name>
<value>hdfs://localhost:54310</value>
<description>The name of the default file system. A URI whose
scheme and authority determine the FileSystem implementation. The
uri's scheme determines the config property (fs.SCHEME.impl) naming
theFileSystem implementation class. The uri's authority is used to
determine the host, port, etc. for a filesystem.</description>
</property>

www.manaraa.com

76

A.1.13. Creating Directory

//Add the following snippets between the <configuration> ...
</configuration> tags in the respective configuration XML file.

$sudovi /usr/local/hadoop/conf/mapred-site.xml

<!-- In: conf/mapred-site.xml -->
<property>
<name>mapred.job.tracker</name>
<value>localhost:54311</value>
<description>The host and port that the MapReduce job tracker runs
at. If "local", then jobs are run in-process as a single map
and reduce task.
</description>
</property>

//Add the following snippets between the <configuration> ...
</configuration> tags in the respective configuration XML file.

$sudovi /usr/local/hadoop/conf/hdfs-site.xml

<!-- In: conf/hdfs-site.xml -->
<property>
<name>dfs.replication</name>
<value>1</value>
<description>Default block replication.
 The actual number of replications can be specified when the file is created.
 The default is used if replication is not specified in create time.
</description>
</property>

//Now we create the directory and set the required
ownerships and permissions:

$ sudomkdir -p /app/hadoop/tmp
$ sudochownhadoop:hadoop /app/hadoop/tmp

www.manaraa.com

77

A.1.14. Formatting Name Node

//Formatting the name node.

//Do not format a running Hadoopfilesystem as you will lose all the data currently

in the cluster (in //HDFS).To format the filesystem (which simply initializes the

directory specified by the dfs.name.dir//variable), run the command.

A.1.15 Starting Single-node Cluster

$/usr/local/hadoop/bin/hadoopnamenode –format

$ /usr/local/hadoop/bin ./start-all.sh

www.manaraa.com

78

A.1.16 A notify tool for checking whether the expected Hadoop

processes are running is JPS

$ cd /usr/lib/jvm/jdk1.7.0_06/bin

hadoop@VMHadoop:/usr/lib/jvm/jdk1.7.0_06/bin$./jps

www.manaraa.com

79

Appendix B

Testing MapReduce Program

In this Appendix we will run a “wordcount” problem to test the MapReduce function

of Hadoop. This function will return number of occurrences of each word from a given

text input file.

B.1. Running a MapReduce job

$ sudo mkdir /tmp/newout
$ cd /tmp
$ vi/tmp/newout/input.txt

www.manaraa.com

80

B.1.2. Retrieve the job result from HDFS

$ /usr/local/hadoop/bin/hadoopdfs -copyFromLocal /tmp/newout/
/user/hduser/hadoopout

$ bin/hadoop jar hadoop *examples*jar
wordcount/user/hduser/hadoop/input.txt/user/hduser/hadoop-count-out/

$ cd /usr/local/hadoop
$ mkdir /tmp/hdout
$ bin/hadoopdfs -getmerge /user/hduser/hadoop-count-out /tmp/hdout
$ head /tmp/hdout/hadoop-count-out

www.manaraa.com

81

Appendix C

Configuration of Hive

In this appendix, we will configure the Data WareHouse “Hive” on top of Hadoop.

Prerequisite

• Installation of Hadoop[We have used version 0.20.2]

• Need to download Hive [hive-0.8.1.tar.gz] from

http://mirrors.ispros.com.bd/apache/hive/stable/

C.1. Installation of Hive

. $sudo cp hive-0.8.1.tar.gz /usr/local/

www.manaraa.com

82

 $sudotar -xzvfhive-0.8.1.tar.gz

mv /usr/local/hive-0.8.1.tar.gz /usr/local/hive

chown -R hadoop:hadoop /usr/local/hive

www.manaraa.com

83

C.2. Adding the below environment variables in ~/.bashrc file

C.3. Configure hadoop HDFS before a table can be created in Hive

C.4. To use hive command line interface (CLI) from the shell:

$ export HIVE_HOME=/usr/local/hive

 $ export PATH=$HIVE_HOME/bin:$PATH

 $HADOOP_HOME/bin/hadoopfs -mkdir /hivetest

$HADOOP_HOME/bin/hadoopfs -chmodg+w /hivetest

www.manaraa.com

84

www.manaraa.com

85

Appendix D

Testing HiveQL

In this appendix, we will test the data warehouse system Hive by running HiveQl on

it. Here it will take input from a txt file “foo.txt” then it will load the data in table

“foo”. There we can run our SQL like language which is HiveQL.

D.1. Sample text input file

www.manaraa.com

86

D.2. Create table “hive_test”:

D.3. Loading output generated by MapReduce to HIVE’s “hive_test” Table:

D.4.1. HiveQL sample query example:

// Show Table:

create table hive_test (word STRING,count INT) ROW FORMAT
delimited fields terminated by '\t' lines terminated by '\n';

hive> LOAD DATA LOCAL INPATH '/tmp/hdout/hadoop-out' OVERWRITE
INTO TABLE hive_test;

www.manaraa.com

87

// select * from hive_test;

// Data Filtering: select * from hive_test where count=3;

www.manaraa.com

88

www.manaraa.com

89

List of Figures

1.1 Recent Data Explosion . 2

2.1 CAP Theorem . 15

2.2 Horizontal Scalability vs. Vertical Scalability . 17

2.3 NOSQL Performance Compared to SQL Performance in the context of

‘Relational Property’ of SQL Database . 18

3.1 Example of Key-value Store Model . 22

3.2 Example of Document Databases Model . 23

3.3 Example of Column Family Stores Model . 24

3.4 Example of Graph Databases Model . 25

3.5 YCSB Architecture . 27

3.6 YCSB Benchmark Test Results . 30

3.7 Column-Oriented Database Model of BigTable . 33

3.8 Data Read/Insert Path of Google’s BigTable . 34

3.9 Simple Partition Strategies in Cassandra . 37

3.10 Memstore Usage in HBase Read/Write Paths . 40

4.1 MapReduce Execution Overview . 45

4.2 Clusters of machine running Hadoop at Yahoo! . 48

4.3 HDFS Architecture . 51

4.4 Model of Hadoop MapReduce . 53

5.1 Hive Architecture . 57

www.manaraa.com

90

www.manaraa.com

91

List of Tables

2.1 List of sites that are using NOSQL database . 20

3.1 Key-value Stores Use Case . 22

3.2 Document Databases Use Case . 23

3.3 Column Family Stores Use Case . 24

3.4 Graph Databases Use Case . 26

3.5 Selected NOSQL Databases for Benchmarking . 26

3.6 Summary of YCSB Benchmark Test Result . 31

www.manaraa.com

92

www.manaraa.com

93

Bibliography

[1] NOSQL.

http://www.slideshare.net/theburningmonk/introduction-to-nosql- 12025925

[2] NoSQL. In the Context of Social Web.

 http://www.slideshare.net/hurrycane/nosql-in-the-context-of-social-web-4348152

[3] Wikibon (August 1, 2012). A Comprehensive List of Big Data Statistics.

http://wikibon.org/blog/big-data-statistics/

[4] NoSQL. In Wikipedia. Retrieved August 7, 2012, from

http://en.wikipedia.org/wiki/NoSQL

[5] Graph Database News Editor (July 7, 2012). Not Only SQL, Not Only Hadoop.

http://www.neotechnology.com/2012/06/not-only-sql-not-only-hadoop/

[6] A Monash Research Publication (July 31, 2011). Terminology: Dynamic-vs. fixed-

schema databases.

 http://www.dbms2.com/2011/07/31/dynamic-fixed-schema-databases/

[7] NoSQL doesn’t mean non-relational.

 http://www.xaprb.com/blog/2010/03/08/nosql-doesnt-mean-non-relational/

[8] More on Non-relational (aka, NoSQL) databases. (July 29, 2011).

http://www.larryullman.com/2011/07/29/more-on-non-relational-aka-nosql-

databases/

www.manaraa.com

94

[9] M. Loukides (February 8, 2012). The NoSQL Movement.

http://strata.oreilly.com/2012/02/nosql-non-relational-database.html

[10] John D. Cook (July 6, 2009). ACID versus BASE for database transactions.

 http://www.johndcook.com/blog/2009/07/06/brewer-cap-theorem-base/

[11] C. Roe (March 1, 2012). ACID vs. BASE: The Shifting pH of Database

Transaction Processing. http://www.dataversity.net/acid-vs-base-the-shifting-

ph-of-database-transaction-processing/

 [12] CAP theorem. In Wikipedia. Retrieved August 8, 2012, from

http://en.wikipedia.org/wiki/CAP_theorem

[13] C. Wilson (December 19, 2011). Brewer’s CAP Theorem.

 http://craiggwilson.wordpress.com/2011/12/19/brewers-cap-theorem/

[14] Scalability.

 http://www.investopedia.com/terms/s/scalability.asp#axzz1wbooYu99

[15] M. Kopp (October 5, 2011). NoSQL or RDBMS? – Are we asking the right

questions?

 http://blog.dynatrace.com/2011/10/05/nosql-or-rdbms-are-we-asking-the-right-

questions/

[16] F. Firdausillah (March 09, 2011). Database Availability and Integrity in

NoSQL. http://www.slideshare.net/kaqfa/nosql-availability-integrity

www.manaraa.com

95

[17] Cassandra. http://lineofthought.com/tools/cassandra

[18] MongoDB. http://lineofthought.com/tools/mongodb

[19] Apache HBase. http://lineofthought.com/tools/apache-hbase

[20] Redis. http://lineofthought.com/tools/redis

[21] The four categories of NoSQL databases.

 http://rebelic.nl/engineering/the-four-categories-of-nosql-databases/

[22] M. Vardanyan (May 22, 2011). Picking the Right NoSQL Tool.

http://blog.monitis.com/index.php/2011/05/22/picking-the-right-nosql-database-

tool/

[23] R. Rees. NoSQL, no problem.

 http://www.thoughtworks.com/articles/nosql-comparison

[24] H. Kauhanen (March 09, 2010). NoSQL database.

http://www.slideshare.net/harrikauhanen/nosql-3376398

[25] Cooper, B.F.; Silberstein, A.; Tam, E.; Ramakrishnan, R.; Benchmarking

Cloud Serving Systems with YCSB. In ACM Symposium on Cloud Computing,

ACM, Indianapolis, IN, USA (2010). http://research.yahoo.com/node/3202

[26] https://github.com/brianfrankcooper/YCSB/wiki

[27] https://github.com/brianfrankcooper/YCSB/wiki/Running-a-Workload

www.manaraa.com

96

[28] H. J. Lee. NoSQL Benchmarking.

 http://www.cubrid.org/blog/dev-platform/nosql-benchmarking/

[29] Ricky Ho (October 06, 2010). Pragmatic Programming Techniques.

 http://horicky.blogspot.com/2010/10/bigtable-model-with-cassandra-and-

hbase.html

[30] Cassandra Write Operation Performance Explained.

 http://nosql.mypopescu.com/post/454521259/cassandra-write-operation-

performance-explained

[31] M. Perham (March 17, 2010). Cassandra Internals – Writing.

 http://nosql.mypopescu.com/post/454521259/cassandra-write-operation

performance-explained

[32] Cassandra Reads Performance Explained.

 http://nosql.mypopescu.com/post/474623402/cassandra-reads-performance-

explained

[33] M. Perham (March 17, 2010). Cassandra Internals – Reading.

 http://www.mikeperham.com/2010/03/17/cassandra-internals-reading/

[34] A. Baranau (July 16, 2012). Configuring HBase Memstore: What You Should

Know. http://blog.sematext.com/tag/architecture/

 [35] J. Kelly. Big Data: Hadoop, Business Analytics and Beyond.

http://wikibon.org/wiki/v/Big_Data:_Hadoop,_Business_Analytics_and_Beyond

www.manaraa.com

97

[36] C. White (January 2012). MapReduce and the Data Scientist.

[37] Dr. ssa G. Lodi. Collaborative Environment for Cyber Attacks Detection: The

Cost of Preserving Privacy. Pg. 13-14.

[38] J. Jablonski. Introduction to Hadoop. A Dell Technical White Paper. Pg. 03

[39] A. Thusoo (June 10, 2009). Hive – A Petabyte Scale Data Warehouse using

Hadoop. http://www.facebook.com/note.php?note_id=89508453919

[40] Cloudera. Introduction to Hive.

